Amazon EMR (Elastic MapReduce) vs. SAP Vora

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon EMR
Score 8.8 out of 10
N/A
Amazon EMR is a cloud-native big data platform for processing vast amounts of data quickly, at scale. Using open source tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi (Incubating), and Presto, coupled with the scalability of Amazon EC2 and scalable storage of Amazon S3, EMR gives analytical teams the engines and elasticity to run Petabyte-scale analysis.N/A
SAP Vora
Score 6.0 out of 10
N/A
SAP Vora is a computing engine designed to provide better accessibility to Hadoop data from SAP HANA. SAP Vora manages unstructured Hadoop data by building structured data hierarchies and making the data queryable through an SQL interface.N/A
Pricing
Amazon EMR (Elastic MapReduce)SAP Vora
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon EMRSAP Vora
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon EMR (Elastic MapReduce)SAP Vora
Best Alternatives
Amazon EMR (Elastic MapReduce)SAP Vora
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 7.2 out of 10
IBM Analytics Engine
IBM Analytics Engine
Score 7.2 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon EMR (Elastic MapReduce)SAP Vora
Likelihood to Recommend
8.0
(19 ratings)
6.0
(1 ratings)
Usability
7.0
(4 ratings)
-
(0 ratings)
Support Rating
9.0
(3 ratings)
-
(0 ratings)
User Testimonials
Amazon EMR (Elastic MapReduce)SAP Vora
Likelihood to Recommend
Amazon AWS
We are running it to perform preparation which takes a few hours on EC2 to be running on a spark-based EMR cluster to total the preparation inside minutes rather than a few hours. Ease of utilization and capacity to select from either Hadoop or spark. Processing time diminishes from 5-8 hours to 25-30 minutes compared with the Ec2 occurrence and more in a few cases.
Read full review
SAP
I spent more than 1 year with SAP Vora, SAP Datahub and SAP Leonardo with ML, iOt. I believe this product has potential but it is not easy to adopt. SAP has to keep in mind how open-source big data technologies are able to deliver quick results. I know SAP is stabilizing and fighting hard against many open source technologies, but it still has a long way to go there.
Read full review
Pros
Amazon AWS
  • EMR does well in managing the cost as it uses the task node cores to process the data and these instances are cheaper when the data is stored on s3. It is really cost efficient. No need to maintain any libraries to connect to AWS resources.
  • EMR is highly available, secure and easy to launch. No much hassle in launching the cluster (Simple and easy).
  • EMR manages the big data frameworks which the developer need not worry (no need to maintain the memory and framework settings) about the framework settings. It's all setup on launch time. The bootstrapping feature is great.
Read full review
SAP
  • Modelling with SAP HANA and Hadoop
  • Realtime Analysis using Vora and HANA as a Streaming engine
  • Time series Analysis on large chunks of datasets
  • Machine learning capabilities on Hadoop tables and spark contexts
Read full review
Cons
Amazon AWS
  • It would have been better if packages like HBase and Flume were available with Amazon EMR. This would make the product even more helpful in some cases.
  • Products like Cloudera provide the options to move the whole deployment into a dedicated server and use it at our discretion. This would have been a good option if available with EMR.
  • If EMR gave the option to be used with any choice of cloud provider, it would have helped instead of having to move the data from another cloud service to S3.
Read full review
SAP
  • Vora 2.0 in on premise scenarios could be improved, as adoption of the cloud is not an easy sell.
  • Kubernetes and Docker integration need to be more seamless and quick to understand. If this is simplified, it will be easy to adopt
  • Data hub orchestration and integrations could be simplified so that quick adoption within SAP BW, ECC, S4 HANa scenarios is possible.
Read full review
Usability
Amazon AWS
Documentation is quite good and the product is regularly updated, so new features regularly come out. The setup is straightforward enough, especially once you have already established the overall platform infrastructure and the aws-cli APIs are easy enough to use. It would be nice to have some out-of-the-box integrations for checking logs and the Spark UI, rather than relying on know-how and digging through multiple levels to find the informations
Read full review
SAP
No answers on this topic
Support Rating
Amazon AWS
I give the overall support for Amazon EMR this rating because while the support technicians are very knowledgeable and always able to help, it sometimes takes a very long time to get in contact with one of the support technicians. So overall the support is pretty good for Amazon EMR.
Read full review
SAP
No answers on this topic
Alternatives Considered
Amazon AWS
Snowflake is a lot easier to get started with than the other options. Snowflake's data lake building capabilities are far more powerful. Although Amazon EMR isn't our first pick, we've had an excellent experience with EC2 and S3. Because of our current API interfaces, it made more sense for us to continue with Hadoop rather than explore other options.
Read full review
SAP
No answers on this topic
Return on Investment
Amazon AWS
  • It was obviously cheaper and convenient to use as most of our data processing and pipelines are on AWS. It was fast and readily available with a click and that saved a ton of time rather than having to figure out the down time of the cluster if its on premises.
  • It saved time on processing chunks of big data which had to be processed in short period with minimal costs. EMR solved this as the cluster setup time and processing was simple, easy, cheap and fast.
  • It had a negative impact as it was very difficult in submitting the test jobs as it lags a UI to submit spark code snippets.
Read full review
SAP
  • Negative impact would be Poc and RFI will need more time to adopt and decision making gets delayed
  • Positive impact would be it's a great leap from SAP to adopt a Big data technologies and AI within cloud stream. But selling is going to take time.
Read full review
ScreenShots