Amazon Kendra is presented by the vendor as an accurate and easy to use enterprise search service powered by machine learning.
N/A
Apache Lucene
Score 9.0 out of 10
N/A
Apache Lucene is an open source and free text search engine library written in Java. It is a technology suitable for applications that requires full-text search, and is available cross-platform.
$0
per month
Elasticsearch
Score 8.7 out of 10
N/A
Elasticsearch is an enterprise search tool from Elastic in Mountain View, California.
Applications Developer Information Technology Specialist
Chose Apache Lucene
The search and index performance of [Apache] Lucene is excellent and the quality of results is good, if not better. For implementing it with small scale applications it is a no brainer, Lucene is the best and most cost effective solution. Learning curve is not too steep either.
Elasticsearch is based off of Apache Lucene. You get the same power as well as a JSON response. REST API is simple and easy to understand. Other options include XML responses which is much more complicated to parse at times.
Almost no one uses Solr anymore--most have migrated to Elasticsearch. I've never tried it myself but I heard Solr is much more difficult to configure and because it doesn't use a REST API, it locks you into Java and XML. XML--ick! Lucene: Elasticsearch is built using Lucene …
Team Lead Xactimate Online Xactware Solutions, Inc
Chose Elasticsearch
The only other competitor we researched was mongo as some of our table information is stored in an XML file, but as we were doing searching we gravitated towards Elasticsearch. We knew mongo had some of the qualifications for what we wanted, but went with Elasticsearch for …
Apache Solr is the closest competitor to ElasticSearch from a search engine perspective. ElasticSearch is simple and streamlined in it's configuration. When taken as a whole, Apache Solr is more robust as a storage engine from a developer perspective, ElasticSearch has the …
Even though Lucene is very powerful it is not easy to implement Lucene as a search provider. Lucene is the core of Elasticsearch and they made implementation very easy.
An intelligent search solution that makes it easy to find the information employees and customers want to know without migrating from one place to another and without wasting time with just a few clicks, Amazon Kendra connects relevant data sources through fully functional and customizable search while minimizing risks increasing workflow by obtaining detailed results.
Apache Lucene is a perfect text search implementation where the heap space usage needs to be kept to its minimal. It also enables search based on various search fields and most importantly the search and index process can happen simultaneously. The only scenario where it might be less appropriate would be when the index size grows too big. We have witnessed few scalable issues where the search would take a while when the index size is too large.
Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
We found Apache Lucene to be extremely performant in querying large amounts of data and retrieving the correct files based on the metadata provided.
The online community offers great support for the product. Even though it is an open source tool, it is not difficult to find help online for it.
When we were creating a proof of concept application, we found that the software worked just as well, while being run locally on a resource-limited PC.
As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand!
Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast!
Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster.
Amazon Kendra is an intelligent search service that facilitates the way we obtain information by making it easier to obtain accurate documents without wasting time, it is a software that is designed to work in an optimized way, providing a business quality service with flexible features and innumerable benefits. , it is effective and fresh.
To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
Amazon Kendra offers an intelligent search experience, it is a tool that facilitates the way we work by providing secure and immediate results, saves time, increases productivity and brings progress. It is the best way to get accurate answers using natural language. It is a software that works in an extraordinary way, being easy to implement, safe and effective, the experience is unique.
The search and index performance of [Apache] Lucene is excellent and the quality of results is good, if not better. For implementing it with small scale applications it is a no brainer, Lucene is the best and most cost effective solution. Learning curve is not too steep either.
As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
Being an open source project we did not have to pay any licensing fees for using Apache Lucene. It has greatly improved our search functionality in our web apps.
We have had great luck with implementing Elasticsearch for our search and analytics use cases.
While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled.
We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems.