Amazon Kinesis is a streaming analytics suite for data intake from video or other disparate sources and applying analytics for machine learning (ML) and business intelligence.
$0.01
per GB data ingested / consumed
Apache Flink
Score 9.0 out of 10
N/A
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. And FlinkCEP is the Complex Event Processing (CEP) library implemented on top of Flink. Users can detect event patterns in streams of events.
N/A
Pricing
Amazon Kinesis
Apache Flink
Editions & Modules
Amazon Kinesis Video Streams
$0.00850
per GB data ingested / consumed
Amazon Kinesis Data Streams
$0.04
per hour per stream
Amazon Kinesis Data Analytics
$0.11
per hour
Amazon Kinesis Data Firehose
tiered pricing starting at $0.029
per month first 500 TB ingested
No answers on this topic
Offerings
Pricing Offerings
Amazon Kinesis
Apache Flink
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon Kinesis
Apache Flink
Features
Amazon Kinesis
Apache Flink
Streaming Analytics
Comparison of Streaming Analytics features of Product A and Product B
Amazon Kinesis is a great replacement for Kafka and it works better whenever the components of the solution are AWS based. Best if extended fan-out is not required, but still price-performance ratio is very good for simplifying maintenance.
I would go with a different option if the systems to be connected are legacy, for instance in the case of traditional messaging clients.
In well-suited scenarios, I would recommend using Apache Flink when you need to perform real-time analytics on streaming data, such as monitoring user activities, analyzing IoT device data, or processing financial transactions in real-time. It is also a good choice in scenarios where fault tolerance and consistency are crucial. I would not recommend it for simple batch processing pipelines or for teams that aren't experienced, as it might be overkill, and the steep learning curve may not justify the investment.
Python/SQL API, since both are relatively new, still misses a few features in comparison with the Java/Scala option
Steep Learning Curve, it's documentation could be improved to something more user-friendly, and it could also discuss more theoretical concepts than just coding
The documentation was confusing and lacked examples. The streams suddenly stopped working with no explanation and there was no information in the logs. All these were more difficult when dealing with enhanced fan-out. In fact, we were about to abort the usage of Kinesis due to a misunderstanding with enhanced fan-out.
The main benefit was around set up - incredibly easy to just start using Kinesis. Kinesis is a real-time data processing platform, while Kafka is more of a message queue system. If you only need a message queue from a limited source, Kafka may do the job. More complex use cases, with low latency, higher volume of data, real time decisions and integration with multiple sources and destination at a decent price, Kinesis is better.
Apache Spark is more user-friendly and features higher-level APIs. However, it was initially built for batch processing and only more recently gained streaming capabilities. In contrast, Apache Flink processes streaming data natively. Therefore, in terms of low latency and fault tolerance, Apache Flink takes the lead. However, Spark has a larger community and a decidedly lower learning curve.