Likelihood to Recommend I have asked all my juniors to work with Anaconda and Pycharm only, as this is the best combination for now. Coming to use cases: 1. When you have multiple applications using multiple Python variants, it is a really good tool instead of Venv (I never like it). 2. If you have to work on multiple tools and you are someone who needs to work on data analytics, development, and machine learning, this is good. 3. If you have to work with both R and Python, then also this is a good tool, and it provides support for both.
Read full review For [a] data scientist require[d] to build a machine learning model, so he/she didn't worry about infrastructure to maintain it.
All kind of feature[s] such as train, build, deploy and monitor the machine learning model available in a single suite.
If someone has [their] own environment for ML studio, so there [it would] not [be] useful for them.
Read full review Pros Anaconda is a one-stop destination for important data science and programming tools such as Jupyter, Spider, R etc. Anaconda command prompt gave flexibility to use and install multiple libraries in Python easily. Jupyter Notebook, a famous Anaconda product is still one of the best and easy to use product for students like me out there who want to practice coding without spending too much money. Read full review User friendliness: This is by far the most user friendly tool I've seen in analytics. You don't need to know how to code at all! Just create a few blocks, connect a few lines and you are capable of running a boosted decision tree with a very high R squared! Speed: Azure ML is a cloud based tool, so processing is not made with your computer, making the reliability and speed top notch! Cost: If you don't know how to code, this is by far the cheapest machine learning tool out there. I believe it costs less than $15/month. If you know how to code, then R is free. Connectivity: It is super easy to embed R or Python codes on Azure ML. So if you want to do more advanced stuff, or use a model that is not yet available on Azure ML, you can simply paste the code on R or Python there! Microsoft environment: Many many companies rely on the Microsoft suite. And Azure ML connects perfectly with Excel, CSV and Access files. Read full review Cons It can have a cloud interface to store the work. Compatible for large size files. I used R Studio for building Machine Learning models, Many times when I tried to run the entire code together the software would crash. It would lead to loss of data and changes I made. Read full review It would be great to have text tips that could ease new users to the platform, especially if an error shows up Scenario-based documentation Pre-processing of modules that had been previously run. Sometimes they need to be re-run for no apparent reason Read full review Likelihood to Renew It's really good at data processing, but needs to grow more in publishing in a way that a non-programmer can interact with. It also introduces confusion for programmers that are familiar with normal Python processes which are slightly different in Anaconda such as virtualenvs.
Read full review Usability I am giving this rating because I have been using this tool since 2017, and I was in college at that time. Initially, I hesitated to use it as I was not very aware of the workings of Python and how difficult it is to manage its dependency from project to project. Anaconda really helped me with that. The first machine-learning model that I deployed on the Live server was with Anaconda only. It was so managed that I only installed libraries from the requirement.txt file, and it started working. There was no need to manually install cuda or tensor flow as it was a very difficult job at that time. Graphical data modeling also provides tools for it, and they can be easily saved to the system and used anywhere.
Read full review Easy and fastest way to develop, test, deploy and monitor the machine learning model.
- Easy to load the data set
-Drag and drop the process of the Machine learning life cycle.
Read full review Support Rating Anaconda provides fast support, and a large number of users moderate its online community. This enables any questions you may have to be answered in a timely fashion, regardless of the topic. The fact that it is based in a Python environment only adds to the size of the online community.
Read full review Support is nonexistent. It's very frustrating to try and find someone to actually talk to. The robot chatbots are just not well trained.
Read full review Implementation Rating Not sure
Read full review Alternatives Considered I have experience using
RStudio oustide of Anaconda.
RStudio can be installed via anaconda, but I like to use
RStudio separate from Anaconda when I am worin in R. I tend to use Anaconda for python and
RStudio for working in R. Although installing libraries and packages can sometimes be tricky with both
RStudio and Anaconda, I like installing R packages via
RStudio . However, for anything python-related, Anaconda is my go to!
Read full review It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved usability even for non-specialist users.
Read full review Return on Investment It has helped our organization to work collectively faster by using Anaconda's collaborative capabilities and adding other collaboration tools over. By having an easy access and immediate use of libraries, developing times has decreased more than 20 % There's an enormous data scientist shortage. Since Anaconda is very easy to use, we have to be able to convert several professionals into the data scientist. This is especially true for an economist, and this my case. I convert myself to Data Scientist thanks to my econometrics knowledge applied with Anaconda. Read full review Productivity: Instead of coding and recoding, Azure ML helped my organization to get to meaningful results faster; Cost: Azure ML can save hundreds (or even thousands) of dollars for an organization, since the license costs around $15/month per seat. Focus on insights and not on statistics: Since running a model is so easy, analysts can focus more on recommendations and insights, rather than statistical details Read full review ScreenShots