DataStax Enterprise (DSE) is the scale-out, cloud-native NoSQL database built on Apache Cassandra. DSE is Developer Ready providing developers the freedom of choice of REST, GraphQL, CQL and JSON/Document APIs.
N/A
etcd
Score 0.0 out of 10
N/A
etcd is a distributed, reliable key-value store for the most critical data of a distributed system, that is available free and open source under the Apache 2.0 license.
Against HBase, writes were faster. Reads not so much. Also ability to store in other formats would be good (such as objects). Compared to aerospike, does not compare. Aerospike blows it out of water.
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for …
Cassandra does one thing very well. It's able to collect any type of metrics and analytics and store them at very fast speeds. But when it comes to reading the data, there are minor performance issues. That's when other databases such as couchdb or couchbase come in. They can …
Apache Cassandra has the best of both worlds, it is a Java based NoSQL, linearly scalable, best in class
tunable performance across different workloads, fault tolerant, distributed, masterless, time series database. We have used both Apache HBase and MongoDB for some use cases …
Four years ago, I needed to choose a web-scale database. Having used relational databases for years (PostgreSQL is my favorite), I needed something that could perform well at scale with no downtime. I considered VoltDB for its in-memory speed, but it's limited in scale. I …
DataStax Enterprise offered best-in-class write performance and scalability. The customer support team was very helpful in the adoption of new technology.
We chose datastax because we need a system always available and capable of ingesting a large amount of data per second, even if eventually consistent and with multi data center sync native support.
We considered Cloudera as an alternative using Kafka as the ingestion layer but …
Amazon DynamoDB and Datastax Cassandra are similar on masterless architecture and principles, DynamoDB is managed and needs cost analysis. If you need to have better control, Datastax is better.
I also did a prototype with Google Spanner in one of the recent innovation days, it …
Apache Cassandra is a NoSQL database and well suited where you need highly available, linearly scalable, tunable consistency and high performance across varying workloads. It has worked well for our use cases, and I shared my experiences to use it effectively at the last Cassandra summit! http://bit.ly/1Ok56TK It is a NoSQL database, finally you can tune it to be strongly consistent and successfully use it as such. However those are not usual patterns, as you negotiate on latency. It works well if you require that. If your use case needs strongly consistent environments with semantics of a relational database or if the use case needs a data warehouse, or if you need NoSQL with ACID transactions, Apache Cassandra may not be the optimum choice.
Real-time transaction processing (both reads and writes) is where DataStax Enterprise shines. It's very fast with linear scalability should more resources be needed. Additional nodes are added very easily. DataStax Enterprise on its own (without Solr or Spark enabled) isn't well suited for long complicated reports. The data model doesn't support joining multiple tables together which is common in BI reporting.
Continuous availability: as a fully distributed database (no master nodes), we can update nodes with rolling restarts and accommodate minor outages without impacting our customer services.
Linear scalability: for every unit of compute that you add, you get an equivalent unit of capacity. The same application can scale from a single developer's laptop to a web-scale service with billions of rows in a table.
Amazing performance: if you design your data model correctly, bearing in mind the queries you need to answer, you can get answers in milliseconds.
Time-series data: Cassandra excels at recording, processing, and retrieving time-series data. It's a simple matter to version everything and simply record what happens, rather than going back and editing things. Then, you can compute things from the recorded history.
Datastax Cassandra provides high availability and good performance for a database. It is built on top of open source Apache Cassandra so you can always somewhat understand the internal functioning and why.
Datastax Cassandra is fairly simple to start using, you can install/setup your cluster and be productive in 1 day.
Datastax Cassandra provides a lot of good detailed documentation, and when starting, the detailed free videos on the Datastax site and documentation are very helpful.
Datastax Enterprise Edition of Cassandra provides more tools, good support, and quick response SLA for enterprise business support.
Cassandra runs on the JVM and therefor may require a lot of GC tuning for read/write intensive applications.
Requires manual periodic maintenance - for example it is recommended to run a cleanup on a regular basis.
There are a lot of knobs and buttons to configure the system. For many cases the default configuration will be sufficient, but if its not - you will need significant ramp up on the inner workings of Cassandra in order to effectively tune it.
I would recommend Cassandra DB to those who know their use case very well, as well as know how they are going to store and retrieve data. If you need a guarantee in data storage and retrieval, and a DB that can be linearly grown by adding nodes across availability zones and regions, then this is the database you should choose.
There is a bit of a learning curve and tasks that are simple in traditional RDBMS systems can be complicated with DataStax Enterprise but once you get the hang of denormalizing data and getting the data model correct DataStax Enterprise is very usable. Usability from the developer's standpoint is very simple - the complication is on the architecture side with the data model.
DataStax has the best community. They have instant customer support to solve problems and are knowledgeable of the problems faced by the customer. The documentation is pretty top-notch.
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for web and mobile applications due to its performance concern. Cassandra, by contrast, offers the availability and performance necessary for developing highly available applications. Furthermore, the Hadoop technology stack is typically deployed in a single location, while in the big international enterprise context, we demand the feasibility for deployment across countries and continents, hence finally we are favor of Cassandra
DataStax Enterprise offered best-in-class write performance and scalability. The customer support team was very helpful in the adoption of new technology.
I have no experience with this but from the blogs and news what I believe is that in businesses where there is high demand for scalability, Cassandra is a good choice to go for.
Since it works on CQL, it is quite familiar with SQL in understanding therefore it does not prevent a new employee to start in learning and having the Cassandra experience at an industrial level.