Likelihood to Recommend Great for REST API development, if you want a small, fast server that will send and receive JSON structures, CouchDB is hard to beat. Not great for enterprise-level relational database querying (no kidding). While by definition, document-oriented databases are not relational, porting or migrating from relational, and using CouchDB as a backend is probably not a wise move as it's reliable, but It may not always be highly available.
Read full review Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
Read full review Pros It can replicate and sync with web browsers via PouchDB. This lets you keep a synced copy of your database on the client-side, which offers much faster data access than continuous HTTP requests would allow, and enables offline usage. Simple Map/Reduce support. The M/R system lets you process terabytes of documents in parallel, save the results, and only need to reprocess documents that have changed on subsequent updates. While not as powerful as Hadoop, it is an easy to use query system that's hard to screw up. Sharding and Clustering support. As of CouchDB 2.0, it supports clustering and sharding of documents between instances without needing a load balancer to determine where requests should go. Master to Master replication lets you clone, continuously backup, and listen for changes through the replication protocol, even over unreliable WAN links. Read full review As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand! Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast! Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster. Read full review Cons NoSQL DB can become a challenge for seasoned RDBMS users. The map-reduce paradigm can be very demanding for first-time users. JSON format documents with Key-Value pairs are somewhat verbose and consume more storage. Read full review Joining data requires duplicate de-normalized documents that make parent child relationships. It is hard and requires a lot of synchronizations Tracking errors in the data in the logs can be hard, and sometimes recurring errors blow up the error logs Schema changes require complete reindexing of an index Read full review Likelihood to Renew Because our current solution S3 is working great and CouchDB was a nightmare. The worst is that at first, it seemed fine until we filled it with tons of data and then started to create views and actually delete.
Read full review We're pretty heavily invested in ElasticSearch at this point, and there aren't any obvious negatives that would make us reconsider this decision.
Read full review Usability Couchdb is very simple to use and the features are also reduced but well implemented. In order to use it the way its designed, the ui is adequate and easy. Of course, there are some other task that can't be performed through the admin ui but the minimalistic design allows you to use external libraries to develop custom scripts
Read full review To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
Read full review Support Rating We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
Read full review Implementation Rating it support is minimal also hw requirements. Also for development, we can have databases replicated everywhere and the replication is automagical. once you set up the security and the rules for replication, you are ready to go. The absence of a model let you build your app the way you want it
Read full review Do not mix data and master roles. Dedicate at least 3 nodes just for Master
Read full review Alternatives Considered Read full review As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
Read full review Return on Investment It has saved us hours and hours of coding. It is has taught us a new way to look at things. It has taught us patience as the first few weeks with CouchDB were not pleasant. It was not easy to pick up like MongoDB. Read full review We have had great luck with implementing Elasticsearch for our search and analytics use cases. While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled. We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems. Read full review ScreenShots