Apache CouchDB is an HTTP + JSON document database with Map Reduce views and bi-directional replication. The Couch Replication Protocol is implemented in a variety of projects and products that span computing environments from globally distributed server-clusters, over mobile phones to web browsers.
N/A
Google Cloud Datastore
Score 7.8 out of 10
N/A
Google Cloud Datastore is a NoSQL "schemaless" database as a service, supporting diverse data types. The database is managed; Google manages sharding and replication and prices according to storage and activity.
N/A
Pricing
Apache CouchDB
Google Cloud Datastore
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
CouchDB
Google Cloud Datastore
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache CouchDB
Google Cloud Datastore
Features
Apache CouchDB
Google Cloud Datastore
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Great for REST API development, if you want a small, fast server that will send and receive JSON structures, CouchDB is hard to beat. Not great for enterprise-level relational database querying (no kidding). While by definition, document-oriented databases are not relational, porting or migrating from relational, and using CouchDB as a backend is probably not a wise move as it's reliable, but It may not always be highly available.
If you want a serverless NoSQL database, no matter it is for personal use, or for company use, Google Cloud Datastore should be on top of your list, especially if you are using Google Cloud as your primary cloud platform. It integrates with all services in the Google Cloud platform.
It can replicate and sync with web browsers via PouchDB. This lets you keep a synced copy of your database on the client-side, which offers much faster data access than continuous HTTP requests would allow, and enables offline usage.
Simple Map/Reduce support. The M/R system lets you process terabytes of documents in parallel, save the results, and only need to reprocess documents that have changed on subsequent updates. While not as powerful as Hadoop, it is an easy to use query system that's hard to screw up.
Sharding and Clustering support. As of CouchDB 2.0, it supports clustering and sharding of documents between instances without needing a load balancer to determine where requests should go.
Master to Master replication lets you clone, continuously backup, and listen for changes through the replication protocol, even over unreliable WAN links.
Because our current solution S3 is working great and CouchDB was a nightmare. The worst is that at first, it seemed fine until we filled it with tons of data and then started to create views and actually delete.
For the amount of use we're getting from Google Cloud Datastore, switching to any other platform would have more cost with little gain. Not having to manage and maintain Google Cloud Datastore for over 4 years has allowed our teams to work on other things. The price is so low that almost any other option for our needs would be far more expensive in time and money.
Couchdb is very simple to use and the features are also reduced but well implemented. In order to use it the way its designed, the ui is adequate and easy. Of course, there are some other task that can't be performed through the admin ui but the minimalistic design allows you to use external libraries to develop custom scripts
it support is minimal also hw requirements. Also for development, we can have databases replicated everywhere and the replication is automagical. once you set up the security and the rules for replication, you are ready to go. The absence of a model let you build your app the way you want it
We selected Google Cloud Datastore as one of our candidates for our NoSQL data is because it is provided by Google Cloud, which fits our needs. Most of our infrastructure is on Google Cloud, so when we think about the NoSQL database, the first thing we thought about is Google Cloud Datastore. And it proves itself.