Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.
N/A
Apache Pig
Score 8.4 out of 10
N/A
Apache Pig is a programming tool for creating MapReduce programs used in Hadoop.
$0
Pricing
Apache Hive
Apache Pig
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache Hive
Apache Pig
Free Trial
No
No
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Hive
Apache Pig
Considered Both Products
Apache Hive
Verified User
Engineer
Chose Apache Hive
Apache Pig is probably the most direct technology to compare to Hive and has several different use cases to Hive. If you want to simplify processing tasks that run using MapReduce then Apache Pig may be a better tool for the job. However if you are going to be running many …
We selected Hive because it supports SQL, schema and provides structure on top of hadoop. Having data structured has its benefits, especially if there are thousands of users processing on the same data over and over again. Pig provides the ability to process unstructured data. …
It takes me less time to write a Pig script than get a Spark program running for batch ETL workloads. Compared to Spark, Pig has a steeper learning curve because it employs a proprietary programming language. In one script and one fine, it can handle both Map Reduce and Hadoop. …
It can accommodate Map Reduce in a single script and a single fine. IT has very much documentation present for easy learning. SQL like queries makes it easy to understand
Verified User
Engineer
Chose Apache Pig
Apache Pig might help to start things faster at first and it was one of the best tool years back but it lacks important features that are needed in the data engineering world right now. Pig also has a steeper learning curve since it uses a proprietary language compared to Spark …
I use both Apache Pig and its alternatives like Apache Spark & Apache Hive. Apache Pig was one of the best options in Big Data's initial stages. But now alternatives have taken over the market, rendering Apache Pig behind in the competition. But it is still a better alternative …
Early on Apache Pig was a great tool for easily writing distributed processing applications without needing to write a complete Java MapReduce job from scratch, but as time as moved on there now better alternatives to get results faster for both ad-hoc analysis and for …
- Provided better ways for optimized hadoop jobs than Hive but not anymore. - Spark DSL is much more advanced and compute times are significantly less.
Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Apache Pig is best suited for ETL-based data processes. It is good in performance in handling and analyzing a large amount of data. it gives faster results than any other similar tool. It is easy to implement and any user with some initial training or some prior SQL knowledge can work on it. Apache Pig is proud to have a large community base globally.
Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax.
Relatively easy to set up and start using.
Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved.
Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Besides Hive, I have used Google BigQuery, which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Apache Pig might help to start things faster at first and it was one of the best tool years back but it lacks important features that are needed in the data engineering world right now. Pig also has a steeper learning curve since it uses a proprietary language compared to Spark which can be coded with Python, Java.
Higher learning curve than other similar technologies so on-boarding new engineers or change ownership of Apache Pig code tends to be a bit of a headache
Once the language is learned and understood it can be relatively straightforward to write simple Pig scripts so development can go relatively quickly with a skilled team
As distributed technologies grow and improve, overall Apache Pig feels left in the dust and is more legacy code to support than something to actively develop with.