Likelihood to Recommend Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review I find HDP easy to use and solves most of the problems for people looking to manage their big data. Evaluating the Hortonworks Data Platform is easy as it is free to download and install in your cluster. Single node cluster available as Sandbox is also easy for POCs.
Read full review Pros Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax. Relatively easy to set up and start using. Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved. Read full review It does a good job of packaging a lot of big data components into bundles and lets you use the ones you are interested in or need. It supports an extensive list of components which lets us solve many problems. It provides the ability to manage installations and maintenance using Apache Ambari. It helps us in using management packs to install/upgrade components easily. It also helps us add, remove components, add, remove hosts, perform upgrades in a convenient manner. It also provides alerts and notifications and monitors the environment. What they excel in is packaging open source components that are relevant and are useful to solve and complement each other as well as contribute to enhancing those components. They do a great job in the community to keep on top of what would be useful to users, fixing bugs and working with other companies and individuals to make the platform better. Read full review Cons Some queries, particularly complex joins, are still quite slow and can take hours Previous jobs and queries are not stored sometimes Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond). Sometimes, directories and tables don't load properly which causes confusion Read full review Since it doesn't come with propriety tools for big data management, additional integration is need (for query handling, search, etc). It was very straightforward to store clinical data without relations, such as data from sensors of a medical device. But it has limitations when needed to combine the data with other clinical data in structured format (e.g. lab results, diagnosis). Overall look and feel of front-end management tools (e.g. monitoring) are not good. It is not bad but it doesn't look professional. Read full review Likelihood to Renew Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review Usability Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review Support Rating Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review Implementation Rating Try not to change variable names.
Read full review Alternatives Considered Besides Hive, I have used
Google BigQuery , which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review We chose [Hortonworks Data Platform] because it's free and because [it] was an IBM partner, suggested as big data platform after biginsights platform.
You can install in more physical computer without high specs, then you can use it in order to learn how to deploy, configure a complete big data cluster.
We installed also in a cloud infrastructure of 5 virtual machine
Read full review Return on Investment Apache hive is secured and scalable solution that helps in increasing the overall organization productivity. Apache hive can handle and process large amount of data in a sufficient time manner. It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs. Read full review It is difficult to have a negative impact, because the required investment is not that high. The big open community behind Hortonworks and related Apache Project makes it easy to put 'the wheel to meet the road' quite quickly. We have seen management meetings where the attendants were impressed by the results achieved with the datalake built on HDP. Read full review ScreenShots