What users are saying about
127 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow noopener noreferrer'>trScore algorithm: Learn more.</a>
Score 8.7 out of 100
6 Ratings
<a href='https://www.trustradius.com/static/about-trustradius-scoring' target='_blank' rel='nofollow noopener noreferrer'>trScore algorithm: Learn more.</a>
Score 7.3 out of 100

Likelihood to Recommend

Apache Spark

The software appears to run more efficiently than other big data tools, such as Hadoop. Given that, Apache Spark is well-suited for querying and trying to make sense of very, very large data sets. The software offers many advanced machine learning and econometrics tools, although these tools are used only partially because very large data sets require too much time when the data sets get too large. The software is not well-suited for projects that are not big data in size. The graphics and analytical output are subpar compared to other tools.
Thomas Young | TrustRadius Reviewer

Cloudera Data Platform

I have seen that Cloudera Data Platform is well suited for large batch processes. It works really well for our indication analyses that are performed by the actuaries. I feel that rapid streaming operations may be a situation where additional technology would be needed to provide for a robust solution.
Anonymous | TrustRadius Reviewer

Pros

Apache Spark

  • Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues
  • Faster in execution times compare to Hadoop and PIG Latin
  • Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner
  • Interoperability between SQL and Scala / Python style of munging data
Nitin Pasumarthy | TrustRadius Reviewer

Cloudera Data Platform

  • Scales
  • Highly available
Anonymous | TrustRadius Reviewer

Cons

Apache Spark

  • Memory management. Very weak on that.
  • PySpark not as robust as scala with spark.
  • spark master HA is needed. Not as HA as it should be.
  • Locality should not be a necessity, but does help improvement. But would prefer no locality
Anson Abraham | TrustRadius Reviewer

Cloudera Data Platform

  • Constantly changing costs
  • Log visibility
Anonymous | TrustRadius Reviewer

Usability

Apache Spark

Apache Spark 8.7
Based on 3 answers
Apache integrates with multiple big data frameworks. It does not exert too much load on the disks. Moreover, it is easy to program and use. It reduces the headache of using different applications separately through its high-level APIs. Big data processing has never been as easy as it is with Apache Spark.
Partha Protim Pegu | TrustRadius Reviewer

Cloudera Data Platform

No score
No answers yet
No answers on this topic

Support Rating

Apache Spark

Apache Spark 8.2
Based on 6 answers
1. It integrates very well with scala or python.2. It's very easy to understand SQL interoperability.3. Apache is way faster than the other competitive technologies.4. The support from the Apache community is very huge for Spark.5. Execution times are faster as compared to others.6. There are a large number of forums available for Apache Spark.7. The code availability for Apache Spark is simpler and easy to gain access to.8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Yogesh Mhasde | TrustRadius Reviewer

Cloudera Data Platform

Cloudera Data Platform 8.0
Based on 2 answers
We have utilized Cloudera support quite frequently and are very satisfied with the capability and responsiveness of that team. Often, the new features delivered with the platform give us an opportunity to mature the way we're doing things, and the support team have been valuable in developing those new patterns.
Anonymous | TrustRadius Reviewer

Alternatives Considered

Apache Spark

Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Anonymous | TrustRadius Reviewer

Cloudera Data Platform

IBM's offering of the Cloud Pak for Data has been a moving target and difficult to compare to Cloudera Data Platform. We have implemented our solution on Amazon Web Services, which appears to be supported by IBM at this point, but the migration would be very expensive for us to endeavor.
Anonymous | TrustRadius Reviewer

Return on Investment

Apache Spark

  • It has had a very positive impact, as it helps reduce the data processing time and thus helps us achieve our goals much faster.
  • Being easy to use, it allows us to adapt to the tool much faster than with others, which in turn allows us to access various data sources such as Hadoop, Apache Mesos, Kubernetes, independently or in the cloud. This makes it very useful.
  • It was very easy for me to use Apache Spark and learn it since I come from a background of Java and SQL, and it shares those basic principles and uses a very similar logic.
Carla Borges | TrustRadius Reviewer

Cloudera Data Platform

  • Reduced operational costs
  • Speed to market
Anonymous | TrustRadius Reviewer

Pricing Details

Apache Spark

General

Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No

Apache Spark Editions & Modules

Additional Pricing Details

Cloudera Data Platform

General

Free Trial
Free/Freemium Version
Premium Consulting/Integration Services
Entry-level set up fee?
No

Cloudera Data Platform Editions & Modules

Edition
CDP Public Cloud - Data Engineering$0.071
CDP Public Cloud - Data Warehouse$0.0541
CDP Public Cloud - Operational Database$0.081
CDP Public Cloud - Machine Learning$0.171
CDP Public Cloud - Data Hub$0.041
CDP Public Cloud - Flow Management$0.151
CDP Private Cloud - Plus Edition$4002
CDP Private Cloud - Base Edition$10,000.003
  1. per CCU (hourly rate)
  2. CCU (annual subscription)
  3. node + variable (annual subscription)
Additional Pricing Details

Add comparison