Apache Spark vs. Cloudera Data Platform

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Spark
Score 8.8 out of 10
N/A
N/AN/A
Cloudera Data Platform
Score 5.8 out of 10
N/A
Cloudera Data Platform (CDP), launched September 2019, is designed to combine the best of Hortonworks and Cloudera technologies to deliver an enterprise data cloud. CDP includes the Cloudera Data Warehouse and machine learning services as well as a Data Hub service for building custom business applications.
$0.04
per CCU (hourly rate)
Pricing
Apache SparkCloudera Data Platform
Editions & Modules
No answers on this topic
CDP Public Cloud - Data Hub
$0.04
per CCU (hourly rate)
CDP Public Cloud - Data Warehouse
$0.054
per CCU (hourly rate)
CDP Public Cloud - Data Engineering
$0.07
per CCU (hourly rate)
CDP Public Cloud - Operational Database
$0.08
per CCU (hourly rate)
CDP Public Cloud - Flow Management
$0.15
per CCU (hourly rate)
CDP Public Cloud - Machine Learning
$0.17
per CCU (hourly rate)
CDP Private Cloud - Plus Edition
$400
CCU (annual subscription)
CDP Private Cloud - Base Edition
$10,000.00
node + variable (annual subscription)
Offerings
Pricing Offerings
Apache SparkCloudera Data Platform
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details——
More Pricing Information
Best Alternatives
Apache SparkCloudera Data Platform
Small Businesses

No answers on this topic

Google BigQuery
Google BigQuery
Score 8.7 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
Cloudera Enterprise Data Hub
Cloudera Enterprise Data Hub
Score 9.0 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 7.9 out of 10
Oracle Exadata
Oracle Exadata
Score 8.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache SparkCloudera Data Platform
Likelihood to Recommend
10.0
(23 ratings)
7.0
(1 ratings)
Likelihood to Renew
10.0
(1 ratings)
-
(0 ratings)
Usability
10.0
(3 ratings)
-
(0 ratings)
Support Rating
8.7
(4 ratings)
8.0
(1 ratings)
User Testimonials
Apache SparkCloudera Data Platform
Likelihood to Recommend
Apache
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review
Cloudera
I have seen that Cloudera Data Platform is well suited for large batch processes. It works really well for our indication analyses that are performed by the actuaries. I feel that rapid streaming operations may be a situation where additional technology would be needed to provide for a robust solution.
Read full review
Pros
Apache
  • Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues
  • Faster in execution times compare to Hadoop and PIG Latin
  • Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner
  • Interoperability between SQL and Scala / Python style of munging data
Read full review
Cloudera
  • Scales
  • Highly available
Read full review
Cons
Apache
  • Memory management. Very weak on that.
  • PySpark not as robust as scala with spark.
  • spark master HA is needed. Not as HA as it should be.
  • Locality should not be a necessity, but does help improvement. But would prefer no locality
Read full review
Cloudera
  • Constantly changing costs
  • Log visibility
Read full review
Likelihood to Renew
Apache
Capacity of computing data in cluster and fast speed.
Read full review
Cloudera
No answers on this topic
Usability
Apache
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review
Cloudera
No answers on this topic
Support Rating
Apache
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review
Cloudera
We have utilized Cloudera support quite frequently and are very satisfied with the capability and responsiveness of that team. Often, the new features delivered with the platform give us an opportunity to mature the way we're doing things, and the support team have been valuable in developing those new patterns.
Read full review
Alternatives Considered
Apache
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review
Cloudera
IBM's offering of the Cloud Pak for Data has been a moving target and difficult to compare to Cloudera Data Platform. We have implemented our solution on Amazon Web Services, which appears to be supported by IBM at this point, but the migration would be very expensive for us to endeavor.
Read full review
Return on Investment
Apache
  • Business leaders are able to take data driven decisions
  • Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available
  • Business is able come up with new product ideas
Read full review
Cloudera
  • Reduced operational costs
  • Speed to market
Read full review
ScreenShots