Oracle Exadata is an enterprise database platform that runs Oracle Database workloads of any scale and criticality with high performance, availability, and security. Exadata’s scale-out design employs optimizations that let transaction processing, analytics, machine learning, and mixed workloads run faster. Consolidating diverse Oracle Database workloads on Exadata platforms in enterprise data centers, Oracle Cloud Infrastructure (OCI), and multicloud environments helps organizations increase…
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
First, get the database on Oracle. If you are in an Oracle stack, it would be much better to use the Oracle products. If you are driving a Ferrari, you wouldn’t put a Mercedes engine in it. If you are writing a query, you cannot rely on other brands. Since I'm an architect, when I look for a product, I look for performance.
The installation is easy because it comes out-of-the-box and you just start using it.
Previous to Oracle Exadata, we were using a normal Oracle RAC service. We were just waiting for this product to come out.
I'm currently writing a data warehouse on Exadata. Before this solution, we were aiming for this to be completed by 8 a.m., when our ETLs would finish. With the help of Exadata's special features, this was reduced to 3 a.m. This solution allows us to bring more data within the same time period. It provides us with more subject areas that provide more reports to our users. Our ETL times reduced to 65%, then to 50%.
If the team looking to use Apache Spark is not used to debug and tweak settings for jobs to ensure maximum optimizations, it can be frustrating. However, the documentation and the support of the community on the internet can help resolve most issues. Moreover, it is highly configurable and it integrates with different tools (eg: it can be used by dbt core), which increase the scenarios where it can be used
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Oracle Exadata Database Machine had the best performance overall hands down. It clearly beat the competition and we were seeing 1000X improvement on SAP HANA. Oracle Exadata Database Machine beat that without us refactoring our code. To achieve that in HANA, we had to refactor the code somewhat. Now this was for our limited POC of 5 use cases. Given the large number of stored procedures we had in Sybase, we need to capture more production metrics but we are seeing incredible performance.
Single support from a single vendor with both machine and database from Oracle, which is costing us less.
With Exadata, we need less technical manpower and less technical support. A business transaction with the integrated and centralized database helps us focus on other business needs.
We don't need to buy additional licenses and Hardware for the next 3 to 5 years.