AWS Glue is a managed extract, transform, and load (ETL) service designed to make it easy for customers to prepare and load data for analytics. With it, users can create and run an ETL job in the AWS Management Console. Users point AWS Glue to data stored on AWS, and AWS Glue discovers data and stores the associated metadata (e.g. table definition and schema) in the AWS Glue Data Catalog. Once cataloged, data is immediately searchable, queryable, and available for ETL.
$0.44
billed per second, 1 minute minimum
Databricks Data Intelligence Platform
Score 8.7 out of 10
N/A
Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run…
One of AWS Glue's most notable features that aid in the creation and transformation of data is its data catalog. Support, scheduling, and the automation of the data schema recognition make it superior to its competitors aside from that. It also integrates perfectly with other AWS tools. The main restriction may be integrated with systems outside of the AWS environment. It functions flawlessly with the current AWS services but not with other goods. Another potential restriction that comes to mind is that glue operates on a spark, which means the engineer needs to be conversant in the language.
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
It is extremely fast, easy, and self-intuitive. Though it is a suite of services, it requires pretty less time to get control over it.
As it is a managed service, one need not take care of a lot of underlying details. The identification of data schema, code generation, customization, and orchestration of the different job components allows the developers to focus on the core business problem without worrying about infrastructure issues.
It is a pay-as-you-go service. So, there is no need to provide any capacity in advance. So, it makes scheduling much easier.
Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
Visualization in MLFLOW experiment can be enhanced
While easy to set up and manage monitoring for large datasets, its complexity can be a barrier for new users. Integration with AWS Ecosystem, Managed Monitoring, Dashboards and monitoring tools for AWS Glue are generally easy to set up and maintain, Automated Data Pipelines. Automates data pipeline creation, making it efficient for certain data integration
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.
in terms of graph generation and interaction it could improve their UI and UX
Amazon responds in good time once the ticket has been generated but needs to generate tickets frequent because very few sample codes are available, and it's not cover all the scenarios.
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
AWS Glue is a fully managed ETL service that automates many ETL tasks, making it easier to set AWS Glue simplifies ETL through a visual interface and automated code generation.
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.
We are using GLUE for our ETL purpose. it’s ease with other our AWS services makes our ROI, 100% ROI.
One missing piece was compatibility with other data source for which we found a work around and made our data source as S3 only, so our dependencies on other data source is also reducing