AWS Glue is a managed extract, transform, and load (ETL) service designed to make it easy for customers to prepare and load data for analytics. With it, users can create and run an ETL job in the AWS Management Console. Users point AWS Glue to data stored on AWS, and AWS Glue discovers data and stores the associated metadata (e.g. table definition and schema) in the AWS Glue Data Catalog. Once cataloged, data is immediately searchable, queryable, and available for ETL.
$0.44
billed per second, 1 minute minimum
Dataiku
Score 8.2 out of 10
N/A
The Dataiku platform unifies data work from analytics to Generative AI. It supports enterprise analytics with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
Pricing
AWS Glue
Dataiku
Editions & Modules
per DPU-Hour
$0.44
billed per second, 1 minute minimum
Discover
Contact sales team
Business
Contact sales team
Enterprise
Contact sales team
Offerings
Pricing Offerings
AWS Glue
Dataiku
Free Trial
No
Yes
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
AWS Glue
Dataiku
Features
AWS Glue
Dataiku
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
AWS Glue
-
Ratings
Dataiku
8.6
5 Ratings
3% above category average
Connect to Multiple Data Sources
00 Ratings
8.05 Ratings
Extend Existing Data Sources
00 Ratings
10.04 Ratings
Automatic Data Format Detection
00 Ratings
10.05 Ratings
MDM Integration
00 Ratings
6.52 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
AWS Glue
-
Ratings
Dataiku
10.0
5 Ratings
18% above category average
Visualization
00 Ratings
10.05 Ratings
Interactive Data Analysis
00 Ratings
10.05 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
AWS Glue
-
Ratings
Dataiku
9.5
5 Ratings
16% above category average
Interactive Data Cleaning and Enrichment
00 Ratings
9.05 Ratings
Data Transformations
00 Ratings
9.05 Ratings
Data Encryption
00 Ratings
10.04 Ratings
Built-in Processors
00 Ratings
10.04 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
AWS Glue
-
Ratings
Dataiku
8.5
5 Ratings
1% above category average
Multiple Model Development Languages and Tools
00 Ratings
8.05 Ratings
Automated Machine Learning
00 Ratings
8.05 Ratings
Single platform for multiple model development
00 Ratings
8.05 Ratings
Self-Service Model Delivery
00 Ratings
10.04 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
One of AWS Glue's most notable features that aid in the creation and transformation of data is its data catalog. Support, scheduling, and the automation of the data schema recognition make it superior to its competitors aside from that. It also integrates perfectly with other AWS tools. The main restriction may be integrated with systems outside of the AWS environment. It functions flawlessly with the current AWS services but not with other goods. Another potential restriction that comes to mind is that glue operates on a spark, which means the engineer needs to be conversant in the language.
Dataiku is an awesome tool for data scientists. It really makes our lives easier. It is also really good for non technical users to see and follow along with the process. I do think that people can fall into the trap of using it without any knowledge at all because so much is automated, but I dont think that is the fault of Dataiku.
It is extremely fast, easy, and self-intuitive. Though it is a suite of services, it requires pretty less time to get control over it.
As it is a managed service, one need not take care of a lot of underlying details. The identification of data schema, code generation, customization, and orchestration of the different job components allows the developers to focus on the core business problem without worrying about infrastructure issues.
It is a pay-as-you-go service. So, there is no need to provide any capacity in advance. So, it makes scheduling much easier.
The integrated windows of frontend and backend in web applications make it cumbersome for the developer.
When dealing with multiple data flows, it becomes really confusing, though they have introduced a feature (Zones) to cater to this issue.
Bundling, exporting, and importing projects sometimes create issues related to code environment. If the code environment is not available, at least the schema of the flow we should be able to import should be.
While easy to set up and manage monitoring for large datasets, its complexity can be a barrier for new users. Integration with AWS Ecosystem, Managed Monitoring, Dashboards and monitoring tools for AWS Glue are generally easy to set up and maintain, Automated Data Pipelines. Automates data pipeline creation, making it efficient for certain data integration
The user experience is very good. Everything feels intuitive and "flows" (sorry excuse the pun) so nicely, and the customization level is also appropriate to the tool. Even as a newer data scientist, it felt easy to use and the explanations/tutorials were very good. The documentation is also at a good level
Amazon responds in good time once the ticket has been generated but needs to generate tickets frequent because very few sample codes are available, and it's not cover all the scenarios.
The open source user community is friendly, helpful, and responsive, at times even outdoing commercial software vendors. Documentation is also top notch, and usually resolves issues without the need for human interactions. Great product design, with a focus on user experience, also makes platform use intuitive, thus reducing the need for explicit support.
AWS Glue is a fully managed ETL service that automates many ETL tasks, making it easier to set AWS Glue simplifies ETL through a visual interface and automated code generation.
Anaconda is mainly used by professional data scientists who have profound knowledge of Python coding, mainly used for building some new algorithm block or some optimization, then the module will be integrated into the Dataiku pipeline/workflow. While Dataiku can be used by even other kinds of users.
We are using GLUE for our ETL purpose. it’s ease with other our AWS services makes our ROI, 100% ROI.
One missing piece was compatibility with other data source for which we found a work around and made our data source as S3 only, so our dependencies on other data source is also reducing