Azure Data Lake Storage Gen2 is a highly scalable and cost-effective data lake solution for big data analytics. It combines the power of a high-performance file system with massive scale and economy to help you speed your time to insight. Data Lake Storage Gen2 extends Azure Blob Storage capabilities and is optimized for analytics workloads.
N/A
IBM Analytics Engine
Score 7.3 out of 10
N/A
IBM BigInsights is an analytics and data visualization tool leveraging hadoop.
Azure Data Lake is an absolutely essential piece of a modern data and analytics platform. Over the past 2 years, our usage of Azure Data Lake as a reporting source has continued to grow and far exceeds more traditional sources like MS SQL, Oracle, etc.
Well suited for my big data related project or a static data set analysis especially for uploading huge dataset to the cluster.
But had some issues with connecting IoT real-time data and feeding to Power BI. It might be my understanding please take it as a mere comment rather than a suggestion.
Easier pricing and plug-and-play like you see with AWS and Azure, it would be nice from a budgeting and billing standpoint, as well as better support for the administration.
Bundling of the Cloud Object Storage should be included with the Analytics Engine.
The inability to add your own Hadoop stack components has made some transfers a little more complex.
Azure Data Lake Storage from a functionality perspective is a much easier solution to work with. It's implementation from Amazon EMR went smooth, and continued usage is definitely better. However, Amazon EMR was significantly cheaper overall between the high transaction fees and cost of storage due to growth. The two both have their advantages and disadvantages, but the functionality of Azure Data Lake Storage outweighed it's cost
We initially wanted to go with Google BigQuery, mainly for the name recognition. However, the pricing and support structure led us to seek alternatives, which pointed us to IBM. Apache Spark was also in the running, but here IBM's domination in the industry made the choice a no-brainer. As previously stated, the support received was not quite what we expected, but was adequate.
Instead of having separate pools of storage for data we are now operating on a single layer platform which has cut down on time spent on maintaining those separate pools.
We have had more of an ROI with the scalability as we are able to control costs of storage when need be.
We are able to operate in a more streamlined approach as we are able to stay within the Azure suite of products and integrate seamlessly with the rest of the applications in our cloud-based infrastructure
This product has allowed us to gather analytics data across multiple platforms so we can view and analyze the data from different workflows, all in one place.
IBM Analytics has allowed us to scale on demand which allows us to capture more and more data, thus increasing our ROI.
The convenience of the ability to access and administer the product via multiple interfaces has allowed our administrators to ensure that the application is making a positive ROI for our business users and partners.