Azure Databricks vs. IBM SPSS Modeler

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Azure Databricks
Score 8.6 out of 10
N/A
Azure Databricks is a service available on Microsoft's Azure platform and suite of products. It provides the latest versions of Apache Spark so users can integrate with open source libraries, or spin up clusters and build in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. The solution includes autoscaling and auto-termination to improve…N/A
IBM SPSS Modeler
Score 8.7 out of 10
N/A
IBM SPSS Modeler is a visual data science and machine learning (ML) solution designed to help enterprises accelerate time to value by speeding up operational tasks for data scientists. Organizations can use it for data preparation and discovery, predictive analytics, model management and deployment, and ML to monetize data assets.
$499
per month
Pricing
Azure DatabricksIBM SPSS Modeler
Editions & Modules
No answers on this topic
IBM SPSS Modeler Personal
4,670
per year
IBM SPSS Modeler Professional
7,000
per year
IBM SPSS Modeler Premium
11,600
per year
IBM SPSS Modeler Gold
contact IBM
per year
Offerings
Pricing Offerings
Azure DatabricksIBM SPSS Modeler
Free Trial
NoYes
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoYes
Entry-level Setup FeeNo setup feeOptional
Additional DetailsIBM SPSS Modeler Personal enables users to design and build predictive models right from the desktop. IBM SPSS Modeler Professional extends SPSS Modeler Personal with enterprise-scale in-database mining, SQL pushback, collaboration and deployment, champion/challenger, A/B testing, and more. IBM SPSS Modeler Premium extends SPSS Modeler Professional by including unstructured data analysis with integrated, natural language text and entity and social network analytics. IBM SPSS Modeler Gold extends SPSS Modeler Premium with the ability to build and deploy predictive models directly into the business process to aid in decision making. This is achieved with Decision Management which combines predictive analytics with rules, scoring, and optimization to deliver recommended actions at the point of impact.
More Pricing Information
Community Pulse
Azure DatabricksIBM SPSS Modeler
Features
Azure DatabricksIBM SPSS Modeler
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Azure Databricks
8.2
2 Ratings
2% below category average
IBM SPSS Modeler
8.6
2 Ratings
3% above category average
Connect to Multiple Data Sources6.62 Ratings8.12 Ratings
Extend Existing Data Sources9.02 Ratings8.12 Ratings
Automatic Data Format Detection9.22 Ratings9.01 Ratings
MDM Integration8.01 Ratings9.01 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Azure Databricks
6.1
2 Ratings
31% below category average
IBM SPSS Modeler
9.0
1 Ratings
7% above category average
Visualization5.72 Ratings9.01 Ratings
Interactive Data Analysis6.52 Ratings9.01 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Azure Databricks
8.1
2 Ratings
0% below category average
IBM SPSS Modeler
9.0
1 Ratings
10% above category average
Interactive Data Cleaning and Enrichment7.02 Ratings9.01 Ratings
Data Transformations8.82 Ratings9.01 Ratings
Data Encryption9.22 Ratings9.01 Ratings
Built-in Processors7.32 Ratings9.01 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Azure Databricks
8.4
2 Ratings
0% below category average
IBM SPSS Modeler
9.0
1 Ratings
7% above category average
Multiple Model Development Languages and Tools8.32 Ratings9.01 Ratings
Automated Machine Learning8.82 Ratings9.01 Ratings
Single platform for multiple model development8.22 Ratings9.01 Ratings
Self-Service Model Delivery8.22 Ratings9.01 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Azure Databricks
8.6
2 Ratings
1% above category average
IBM SPSS Modeler
9.0
1 Ratings
6% above category average
Flexible Model Publishing Options8.02 Ratings9.01 Ratings
Security, Governance, and Cost Controls9.22 Ratings9.01 Ratings
Best Alternatives
Azure DatabricksIBM SPSS Modeler
Small Businesses
Jupyter Notebook
Jupyter Notebook
Score 8.5 out of 10
Jupyter Notebook
Jupyter Notebook
Score 8.5 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Azure DatabricksIBM SPSS Modeler
Likelihood to Recommend
9.5
(3 ratings)
8.7
(8 ratings)
Usability
8.0
(1 ratings)
8.6
(2 ratings)
Support Rating
-
(0 ratings)
10.0
(1 ratings)
User Testimonials
Azure DatabricksIBM SPSS Modeler
Likelihood to Recommend
Microsoft
Suppose you have multiple data sources and you want to bring the data into one place, transform it and make it into a data model. Azure Databricks is a perfectly suited solution for this. Leverage spark JDBC or any external cloud based tool (ADG, AWS Glue) to bring the data into a cloud storage. From there, Azure Databricks can handle everything. The data can be ingested by Azure Databricks into a 3 Layer architecture based on the delta lake tables. The first layer, raw layer, has the raw as is data from source. The enrich layer, acts as the cleaning and filtering layer to clean the data at an individual table level. The gold layer, is the final layer responsible for a data model. This acts as the serving layer for BI For BI needs, if you need simple dashboards, you can leverage Azure Databricks BI to create them with a simple click! For complex dashboards, just like any sql db, you can hook it with a simple JDBC string to any external BI tool.
Read full review
IBM
Fast NLP analytics are very easy in SPSS Modeler because there is a built-in interface for classifying concepts and themes and several pre-built models to match the incoming text source. The visualizations all match and help present NLP information without substantial coding, typically required for word clouds and such. SPSS Modeler is good at attaining results faster in general, and the visual nature of the code makes a good tool to have in the data science team's repository. For younger data scientists, and those just interested, it is a good tool to allow for exploring data science techniques.
Read full review
Pros
Microsoft
  • SQL
  • Data management
  • Data access
Read full review
IBM
  • Combine text and data
  • Provide facilities for all phases of the data mining process.
  • Use a node and stream paradigm to easily and quickly create models.
Read full review
Cons
Microsoft
  • Their pipeline workflow orchestration is pretty primitive. Lacks some common features
  • Workspace UI and navigation requires steep learning curve
  • Personally, I am not fond of their autosave feature. Its dangerous for production level notebooks scripts
Read full review
IBM
  • Has very old style graphs, with lots of limitations.
  • Some advanced statistical functions cannot be done through the menu.
  • The data connectivity is not that extensive.
  • It's an expensive tool.
Read full review
Usability
Microsoft
Based on my extensive use of Azure Databricks for the past 3.5 years, it has evolved into a beautiful amalgamation of all the data domains and needs. From a data analyst, to a data engineer, to a data scientist, it jas got them all! Being language agnostic and focused on easy to use UI based control, it is a dream to use for every Data related personnel across all experience levels!
Read full review
IBM
The ability to do predictive modeling, text analytics for both structured & unstructured data, decision management, optimization, and support for various data sources
Read full review
Support Rating
Microsoft
No answers on this topic
IBM
The online support board is helpful and the free add ons are incredibly appreciated.
Read full review
Alternatives Considered
Microsoft
Against all the tools I have used, Azure Databricks is by far the most superior of them all! Why, you ask? The UI is modern, the features are never ending and they keep adding new features. And to quote Apple, "It just works!" Far ahead of the competition, the delta lakehouse platform also fares better than it counterparts of Iceberg implementation or a loosely bound Delta Lake implementation of Synapse
Read full review
IBM
When it comes to investigation and descriptive we have found SPSS Statistics to be the tool of choice, but when it comes to projects with large and several datasets SPSS Modeler has been picked from our customers.
Read full review
Return on Investment
Microsoft
  • Helped reduce time for collecting data
  • Reduced cost in maintaining multiple data sources
  • Access for multiple users and management of users/data in a single platform
Read full review
IBM
  • Positive - Ease of decision making and reduction in product life cycle time.
  • Positive - Gives entirely new perspective with the help of right team. Helps expanding the portfolio.
  • Negative - Needs to have good understanding about mathematical modelling, of which talent is rare and expensive. Hence, increase the costs for R&D and manpower.
Read full review
ScreenShots

IBM SPSS Modeler Screenshots

Screenshot of Use a single run to test multiple modeling methods, compare results and select which model to deploy. Quickly choose the best performing algorithm based on model performance.Screenshot of Explore geographic data, such as latitude and longitude, postal codes and addresses. Combine it with current and historical data for better insights and predictive accuracy.Screenshot of Capture key concepts, themes, sentiments and trends by analyzing unstructured text data. Uncover insights in web activity, blog content, customer feedback, emails and social media comments.Screenshot of Use R, Python, Spark, Hadoop and other open source technologies to amplify the power of your analytics. Extend and complement these technologies for more advanced analytics while you keep control.