Azure Databricks is a service available on Microsoft's Azure platform and suite of products. It provides the latest versions of Apache Spark so users can integrate with open source libraries, or spin up clusters and build in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. The solution includes autoscaling and auto-termination to improve…
N/A
OpenAI API Platform
Score 9.3 out of 10
N/A
The OpenAI API platform provides a simple interface to AI models for text generation, natural language processing, computer vision, and other purposes.
$0
per 1K tokens
Pricing
Azure Databricks
OpenAI API Platform
Editions & Modules
No answers on this topic
Ada
$0.0008
per 1K tokens
Babbage
$0.0012
per 1K tokens
Curie
$0.0060
per 1K tokens
Davinci
$0.0600
per 1K tokens
Offerings
Pricing Offerings
Azure Databricks
OpenAI API Platform
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Features
Azure Databricks
OpenAI API Platform
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Azure Databricks
8.2
2 Ratings
2% below category average
OpenAI API Platform
-
Ratings
Connect to Multiple Data Sources
6.62 Ratings
00 Ratings
Extend Existing Data Sources
9.02 Ratings
00 Ratings
Automatic Data Format Detection
9.12 Ratings
00 Ratings
MDM Integration
8.01 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Azure Databricks
6.1
2 Ratings
32% below category average
OpenAI API Platform
-
Ratings
Visualization
5.72 Ratings
00 Ratings
Interactive Data Analysis
6.62 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Azure Databricks
8.1
2 Ratings
0% below category average
OpenAI API Platform
-
Ratings
Interactive Data Cleaning and Enrichment
7.02 Ratings
00 Ratings
Data Transformations
8.92 Ratings
00 Ratings
Data Encryption
9.12 Ratings
00 Ratings
Built-in Processors
7.32 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Azure Databricks
8.4
2 Ratings
0% below category average
OpenAI API Platform
-
Ratings
Multiple Model Development Languages and Tools
8.32 Ratings
00 Ratings
Automated Machine Learning
8.92 Ratings
00 Ratings
Single platform for multiple model development
8.12 Ratings
00 Ratings
Self-Service Model Delivery
8.12 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Suppose you have multiple data sources and you want to bring the data into one place, transform it and make it into a data model. Azure Databricks is a perfectly suited solution for this. Leverage spark JDBC or any external cloud based tool (ADG, AWS Glue) to bring the data into a cloud storage. From there, Azure Databricks can handle everything. The data can be ingested by Azure Databricks into a 3 Layer architecture based on the delta lake tables. The first layer, raw layer, has the raw as is data from source. The enrich layer, acts as the cleaning and filtering layer to clean the data at an individual table level. The gold layer, is the final layer responsible for a data model. This acts as the serving layer for BI For BI needs, if you need simple dashboards, you can leverage Azure Databricks BI to create them with a simple click! For complex dashboards, just like any sql db, you can hook it with a simple JDBC string to any external BI tool.
For smaller organizations that run lean and would like to get to deploy a solution quickly. This is a solution that is easy and quick to develop. It has a good amount of customization. However, for advanced customization this might not be a good solution. I suggest experimenting with OpenAI API and then if the experimentation is successful then it is a good idea to optimize and try other LLM models.
Based on my extensive use of Azure Databricks for the past 3.5 years, it has evolved into a beautiful amalgamation of all the data domains and needs. From a data analyst, to a data engineer, to a data scientist, it jas got them all! Being language agnostic and focused on easy to use UI based control, it is a dream to use for every Data related personnel across all experience levels!
Easy to setup, develop and deploy. The payload for the API is simple and has all the inputs required for simple projects. There are a good number of options of LLM models to optimize for speed, cost or quality of the answers. A larger token input might improve the overall usability.
Against all the tools I have used, Azure Databricks is by far the most superior of them all! Why, you ask? The UI is modern, the features are never ending and they keep adding new features. And to quote Apple, "It just works!" Far ahead of the competition, the delta lakehouse platform also fares better than it counterparts of Iceberg implementation or a loosely bound Delta Lake implementation of Synapse
Anthropic is only the best for coding and its really really expensive. So, if you're not making a coding app, I would stay away from it. On the other hand, Gemini models are dirt cheap but come with a bit of performance limitations, so i would use it for big volume non sofisticated use cases. The OpenAI API platform excels at providing best in class performance models, at not outrageous anthropic-like pricing.