Azure Databricks is a service available on Microsoft's Azure platform and suite of products. It provides the latest versions of Apache Spark so users can integrate with open source libraries, or spin up clusters and build in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. The solution includes autoscaling and auto-termination to improve…
N/A
Streamlit
Score 8.1 out of 10
N/A
Streamlit is an open-source Python library designed to make it easy to build custom web-apps for machine learning and data science, from the company of the same name in San Francisco. Streamlit also hosts its community's Streamlit Component offered via API to help users get started.
N/A
Pricing
Azure Databricks
Streamlit
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Azure Databricks
Streamlit
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Features
Azure Databricks
Streamlit
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Azure Databricks
8.1
2 Ratings
3% below category average
Streamlit
-
Ratings
Connect to Multiple Data Sources
6.42 Ratings
00 Ratings
Extend Existing Data Sources
9.02 Ratings
00 Ratings
Automatic Data Format Detection
9.12 Ratings
00 Ratings
MDM Integration
8.01 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Azure Databricks
6.2
2 Ratings
30% below category average
Streamlit
-
Ratings
Visualization
5.82 Ratings
00 Ratings
Interactive Data Analysis
6.72 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Azure Databricks
8.1
2 Ratings
0% below category average
Streamlit
-
Ratings
Interactive Data Cleaning and Enrichment
7.02 Ratings
00 Ratings
Data Transformations
8.92 Ratings
00 Ratings
Data Encryption
9.12 Ratings
00 Ratings
Built-in Processors
7.22 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Azure Databricks
8.3
2 Ratings
1% below category average
Streamlit
-
Ratings
Multiple Model Development Languages and Tools
8.22 Ratings
00 Ratings
Automated Machine Learning
8.92 Ratings
00 Ratings
Single platform for multiple model development
8.12 Ratings
00 Ratings
Self-Service Model Delivery
8.12 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Suppose you have multiple data sources and you want to bring the data into one place, transform it and make it into a data model. Azure Databricks is a perfectly suited solution for this. Leverage spark JDBC or any external cloud based tool (ADG, AWS Glue) to bring the data into a cloud storage. From there, Azure Databricks can handle everything. The data can be ingested by Azure Databricks into a 3 Layer architecture based on the delta lake tables. The first layer, raw layer, has the raw as is data from source. The enrich layer, acts as the cleaning and filtering layer to clean the data at an individual table level. The gold layer, is the final layer responsible for a data model. This acts as the serving layer for BI For BI needs, if you need simple dashboards, you can leverage Azure Databricks BI to create them with a simple click! For complex dashboards, just like any sql db, you can hook it with a simple JDBC string to any external BI tool.
- Don't want to pay Tableau $1,000 / seat? Use Streamlit - Want fully custom views and navigation? Use Streamlit - Want access to Machine Learning and not just your dev team? Use Streamlit - Want to keep things internal and secure? Use Streamlit - Want your Data Science team to be able to crank out projects quickly? Use Streamlit - Sick of Jupyter Notebooks and Business Leaders not understanding them? Use Streamlit Our D.S. strategy has moved completely to delivering pages in Streamlit. I can hand an executive a Jupyter notebook and it'll get lost in translation. I can give them sign-in access to a page and they can answer all of their own "What-If?" questions! We've used Streamlit to productize our Data Science and Machine Learning capabilities.
Recent Security issues (they quickly released an update to combat this though...)
Requires a bit of HTML knowledge to really customize. If you're going quick, you don't need HTML though. Streamlit commands will pump your page out fast.
Based on my extensive use of Azure Databricks for the past 3.5 years, it has evolved into a beautiful amalgamation of all the data domains and needs. From a data analyst, to a data engineer, to a data scientist, it jas got them all! Being language agnostic and focused on easy to use UI based control, it is a dream to use for every Data related personnel across all experience levels!
Against all the tools I have used, Azure Databricks is by far the most superior of them all! Why, you ask? The UI is modern, the features are never ending and they keep adding new features. And to quote Apple, "It just works!" Far ahead of the competition, the delta lakehouse platform also fares better than it counterparts of Iceberg implementation or a loosely bound Delta Lake implementation of Synapse
I started using Streamlit when it first came out and thought it was really useful and powerful. A few years later and they've really hit their stride! The features / widgets / materials they provide have been well researched, well designed, and well implemented. I will take Streamlit to any future companies I go to as well as be a strong promoter wherever I'm currently at. It's free. It's easy to use. It is really powerful. Sure? You could go pay for a larger system but your Data Science team should be able to handle Streamlit easily. I'd argue a non-technical person spending a few weeks in python could pick up Streamlit really quickly.