Microsoft's Azure Machine Learning is and end-to-end data science and analytics solution that helps professional data scientists to prepare data, develop experiments, and deploy models in the cloud. It replaces the Azure Machine Learning Workbench.
$0
per month
IBM Machine Learning for z/OS
Score 10.0 out of 10
N/A
IBM Machine Learning for z/OS® brings AI to transactional applications on IBM zSystems. It can embed machine learning and deep learning models to deliver real-time insight, or inference every transaction with minimal impact to operational SLAs.
IBM Watson Machine Learning is an AI-based scalable self-learning model for any type of business. It can be used to help any company automate repetitive tasks, predict future trends, and make data-driven decisions. I used it to predict stock prices based on certain variables. It works well, cost me nothing, and gives me the ability to create my own AI-based models that I can use for any purpose.
User friendliness: This is by far the most user friendly tool I've seen in analytics. You don't need to know how to code at all! Just create a few blocks, connect a few lines and you are capable of running a boosted decision tree with a very high R squared!
Speed: Azure ML is a cloud based tool, so processing is not made with your computer, making the reliability and speed top notch!
Cost: If you don't know how to code, this is by far the cheapest machine learning tool out there. I believe it costs less than $15/month. If you know how to code, then R is free.
Connectivity: It is super easy to embed R or Python codes on Azure ML. So if you want to do more advanced stuff, or use a model that is not yet available on Azure ML, you can simply paste the code on R or Python there!
Microsoft environment: Many many companies rely on the Microsoft suite. And Azure ML connects perfectly with Excel, CSV and Access files.
IBM had a hard time providing business level support. There were a lot of data scientists and technology experts but rarely a simple business person shows up. Also the way IBM operates IBM Consulting has competing priorities as compared to IBM Technology. This has resulted in a lot of confusion at the client's end.
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved usability even for non-specialist users.
We have been using Microsoft Azure as a machine learning tool. But the challenges remain the same. These are all tools that you need a robust analysis before a decision on the tool. Unfortunately, the technology company cannot make that determination due to lack of core business understanding. Without that the project is doomed.
Productivity: Instead of coding and recoding, Azure ML helped my organization to get to meaningful results faster;
Cost: Azure ML can save hundreds (or even thousands) of dollars for an organization, since the license costs around $15/month per seat.
Focus on insights and not on statistics: Since running a model is so easy, analysts can focus more on recommendations and insights, rather than statistical details