Azure Machine Learning vs. Pytorch

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Azure Machine Learning
Score 8.2 out of 10
N/A
Microsoft's Azure Machine Learning is and end-to-end data science and analytics solution that helps professional data scientists to prepare data, develop experiments, and deploy models in the cloud. It replaces the Azure Machine Learning Workbench.
$0
per month
Pytorch
Score 9.3 out of 10
N/A
Pytorch is an open source machine learning (ML) framework boasting a rich ecosystem of tools and libraries that extend PyTorch and support development in computer vision, NLP and or that supports other ML goals.N/A
Pricing
Azure Machine LearningPytorch
Editions & Modules
Studio Pricing - Free
$0.00
per month
Production Web API - Dev/Test
$0.00
per month
Studio Pricing - Standard
$9.99
per ML studio workspace/per month
Production Web API - Standard S1
$100.13
per month
Production Web API - Standard S2
$1000.06
per month
Production Web API - Standard S3
$9999.98
per month
No answers on this topic
Offerings
Pricing Offerings
Azure Machine LearningPytorch
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Azure Machine LearningPytorch
Best Alternatives
Azure Machine LearningPytorch
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Azure Machine LearningPytorch
Likelihood to Recommend
8.0
(4 ratings)
9.0
(6 ratings)
Likelihood to Renew
7.0
(1 ratings)
-
(0 ratings)
Usability
7.0
(2 ratings)
10.0
(1 ratings)
Support Rating
7.9
(2 ratings)
-
(0 ratings)
Implementation Rating
8.0
(1 ratings)
-
(0 ratings)
User Testimonials
Azure Machine LearningPytorch
Likelihood to Recommend
Microsoft
For [a] data scientist require[d] to build a machine learning model, so he/she didn't worry about infrastructure to maintain it.
All kind of feature[s] such as train, build, deploy and monitor the machine learning model available in a single suite.
If someone has [their] own environment for ML studio, so there [it would] not [be] useful for them.
Read full review
Open Source
They have created Pytorch Lightening on top of Pytorch to make the life of Data Scientists easy so that they can use complex models they need with just a few lines of code, so it's becoming popular. As compared to TensorFlow(Keras), where we can create custom neural networks by just adding layers, it's slightly complicated in Pytorch.
Read full review
Pros
Microsoft
  • User friendliness: This is by far the most user friendly tool I've seen in analytics. You don't need to know how to code at all! Just create a few blocks, connect a few lines and you are capable of running a boosted decision tree with a very high R squared!
  • Speed: Azure ML is a cloud based tool, so processing is not made with your computer, making the reliability and speed top notch!
  • Cost: If you don't know how to code, this is by far the cheapest machine learning tool out there. I believe it costs less than $15/month. If you know how to code, then R is free.
  • Connectivity: It is super easy to embed R or Python codes on Azure ML. So if you want to do more advanced stuff, or use a model that is not yet available on Azure ML, you can simply paste the code on R or Python there!
  • Microsoft environment: Many many companies rely on the Microsoft suite. And Azure ML connects perfectly with Excel, CSV and Access files.
Read full review
Open Source
  • flexibility
  • Clean code, close to the algorithm.
  • Fast
  • Handles GPUs, multiple GPUs on a single machine, CPUs, and Mac.
  • Versatile, can work efficiently on text/audio/image/tabular datasets.
Read full review
Cons
Microsoft
  • It would be great to have text tips that could ease new users to the platform, especially if an error shows up
  • Scenario-based documentation
  • Pre-processing of modules that had been previously run. Sometimes they need to be re-run for no apparent reason
Read full review
Open Source
  • Since pythonic if developing an app with pytorch as backend the response can be substantially slow and support is less compares to Tensorflow
Read full review
Usability
Microsoft
Easy and fastest way to develop, test, deploy and monitor the machine learning model.
- Easy to load the data set
-Drag and drop the process of the Machine learning life cycle.
Read full review
Open Source
The big advantage of PyTorch is how close it is to the algorithm. Oftentimes, it is easier to read Pytorch code than a given paper directly. I particularly like the object-oriented approach in model definition; it makes things very clean and easy to teach to software engineers.
Read full review
Support Rating
Microsoft
Support is nonexistent. It's very frustrating to try and find someone to actually talk to. The robot chatbots are just not well trained.
Read full review
Open Source
No answers on this topic
Implementation Rating
Microsoft
Not sure
Read full review
Open Source
No answers on this topic
Alternatives Considered
Microsoft
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved usability even for non-specialist users.
Read full review
Open Source
Pytorch is very, very simple compared to TensorFlow. Simple to install, less dependency issues, and very small learning curve. TensorFlow is very much optimised for robust deployment but very complicated to train simple models and play around with the loss functions. It needs a lot of juggling around with the documentation. The research community also prefers PyTorch, so it becomes easy to find solutions to most of the problems. Keras is very simple and good for learning ML / DL. But when going deep into research or building some product that requires a lot of tweaks and experimentation, Keras is not suitable for that. May be good for proving some hypotheses but not good for rigorous experimentation with complex models.
Read full review
Return on Investment
Microsoft
  • Productivity: Instead of coding and recoding, Azure ML helped my organization to get to meaningful results faster;
  • Cost: Azure ML can save hundreds (or even thousands) of dollars for an organization, since the license costs around $15/month per seat.
  • Focus on insights and not on statistics: Since running a model is so easy, analysts can focus more on recommendations and insights, rather than statistical details
Read full review
Open Source
  • The ability to make models as never before
  • Being able to control the bias of models was not done before the arrival of Pytorch in our company
Read full review
ScreenShots