The Dataiku platform unifies data work from analytics to Generative AI. It supports enterprise analytics with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
SAS Enterprise Guide
Score 9.2 out of 10
N/A
SAS Enterprise Guide is a menu-driven, Windows GUI tool for SAS.
N/A
Pricing
Dataiku
SAS Enterprise Guide
Editions & Modules
Discover
Contact sales team
Business
Contact sales team
Enterprise
Contact sales team
No answers on this topic
Offerings
Pricing Offerings
Dataiku
SAS Enterprise Guide
Free Trial
Yes
No
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Dataiku
SAS Enterprise Guide
Features
Dataiku
SAS Enterprise Guide
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Dataiku
8.6
5 Ratings
3% above category average
SAS Enterprise Guide
-
Ratings
Connect to Multiple Data Sources
8.05 Ratings
00 Ratings
Extend Existing Data Sources
10.04 Ratings
00 Ratings
Automatic Data Format Detection
10.05 Ratings
00 Ratings
MDM Integration
6.52 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Dataiku
10.0
5 Ratings
17% above category average
SAS Enterprise Guide
-
Ratings
Visualization
10.05 Ratings
00 Ratings
Interactive Data Analysis
10.05 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Dataiku
9.5
5 Ratings
16% above category average
SAS Enterprise Guide
-
Ratings
Interactive Data Cleaning and Enrichment
9.05 Ratings
00 Ratings
Data Transformations
9.05 Ratings
00 Ratings
Data Encryption
10.04 Ratings
00 Ratings
Built-in Processors
10.04 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Dataiku
8.5
5 Ratings
2% above category average
SAS Enterprise Guide
-
Ratings
Multiple Model Development Languages and Tools
8.05 Ratings
00 Ratings
Automated Machine Learning
8.05 Ratings
00 Ratings
Single platform for multiple model development
8.05 Ratings
00 Ratings
Self-Service Model Delivery
10.04 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Dataiku is an awesome tool for data scientists. It really makes our lives easier. It is also really good for non technical users to see and follow along with the process. I do think that people can fall into the trap of using it without any knowledge at all because so much is automated, but I dont think that is the fault of Dataiku.
SAS Enterprise Guide is good at taking various datasets and giving analyst/user ability to do some transformations without substantial amounts of code. Once the data is inside SAS, the memory of it is very efficient. Using SAS for data analysis can be helpful. It will give good statistics for you, and it has a robust set of functions that aid analysis.
The integrated windows of frontend and backend in web applications make it cumbersome for the developer.
When dealing with multiple data flows, it becomes really confusing, though they have introduced a feature (Zones) to cater to this issue.
Bundling, exporting, and importing projects sometimes create issues related to code environment. If the code environment is not available, at least the schema of the flow we should be able to import should be.
Process time of data is a bit long. It depends on the size of your data and complexity of your project tree.
There is not enough online free training videos.
While working with the project tree sometimes the links between the modules are broken or the order for running the modules get mixed up. You should know your project tree by heart.
The user experience is very good. Everything feels intuitive and "flows" (sorry excuse the pun) so nicely, and the customization level is also appropriate to the tool. Even as a newer data scientist, it felt easy to use and the explanations/tutorials were very good. The documentation is also at a good level
It's not all bad, but I don't believe that an enterprise purchase of SAS is worth the expense considering the widely available set of tools in the data analytics space at the moment. In my company, it's a good tool because others use it. Otherwise, I wouldn't purchase a new set of it because it doesn't have some of the better analytical functions in it.
The open source user community is friendly, helpful, and responsive, at times even outdoing commercial software vendors. Documentation is also top notch, and usually resolves issues without the need for human interactions. Great product design, with a focus on user experience, also makes platform use intuitive, thus reducing the need for explicit support.
Although I use SAS support for information on functions, these are SAS related and haven't really come across anything that is specifically for SAS EG.
I've not worked hands-on with the implementation team, but there were no escalations barring a few hiccups in the deployment due to change in requirement & adoption to our company's remote servers.
Anaconda is mainly used by professional data scientists who have profound knowledge of Python coding, mainly used for building some new algorithm block or some optimization, then the module will be integrated into the Dataiku pipeline/workflow. While Dataiku can be used by even other kinds of users.
Why I prefer SAS EG: Data processing speed is much faster than that R Studio. It can load any amount of data and any type of data like structured or unstructured or semi-structured. Its output delivery system by which we have the output in PDF file makes it very comfortable to use and share that file to clients very easily. Inbuilt functions are very powerful and plentiful. Facility of writing macros makes it far away from its competitors.
Positive (cost): SAS made a bundle that include unlimited usage of SAS/Enterprise Guide with a server solution. That by itself made the company save a lot of money by not having to pay individual licences anymore.
Positive (insight): Data analysts in business units often need to crunch data and they don't have access to ETL tools to do it. Having access to SAS/EG gives them that power.
Positive (time to market): Having the users develop components with SAS/EG allows for easier integration in a production environment (SAS batch job) as no code rework is required.