Vertex AI vs. Iguazio

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Vertex AI
Score 8.7 out of 10
N/A
Vertex AI on Google Cloud is an MLOps solution, used to build, deploy, and scale machine learning (ML) models with fully managed ML tools for any use case.
$0
Starting at
Iguazio
Score 10.0 out of 10
N/A
Iguazio, a McKinsey company, offers the Iguazio MLOps Platform used to develop and manage AI applications at scale. It provides data science, data engineering and DevOps teams with a platform to deploy operational ML pipelines.N/A
Pricing
Vertex AIIguazio
Editions & Modules
Imagen model for image generation
$0.0001
Starting at
Text, chat, and code generation
$0.0001
per 1,000 characters
Text data upload, training, deployment, prediction
$0.05
per hour
Video data training and prediction
$0.462
per node hour
Image data training, deployment, and prediction
$1.375
per node hour
No answers on this topic
Offerings
Pricing Offerings
Vertex AIIguazio
Free Trial
YesNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeOptionalNo setup fee
Additional DetailsPricing is based on the Vertex AI tools and services, storage, compute, and Google Cloud resources used.
More Pricing Information
Community Pulse
Vertex AIIguazio
Best Alternatives
Vertex AIIguazio
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Google Cloud AI
Google Cloud AI
Score 8.4 out of 10
Medium-sized Companies
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Google Cloud AI
Google Cloud AI
Score 8.4 out of 10
Enterprises
Dataiku
Dataiku
Score 8.2 out of 10
Dataiku
Dataiku
Score 8.2 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Vertex AIIguazio
Likelihood to Recommend
7.8
(13 ratings)
10.0
(2 ratings)
Performance
7.1
(10 ratings)
-
(0 ratings)
Configurability
7.2
(10 ratings)
-
(0 ratings)
User Testimonials
Vertex AIIguazio
Likelihood to Recommend
Google
Vertex AI seems to be a lot more accurate with image editing versus other competitors (including free one). We do a lot of image creation, especially of dogs in very certain scenarios. We use Adobe Stock to get us started, but many times we need some very specific edits done to the image. We've found Vertex can produce those with a lot more precision than other AI image generators.
Read full review
McKinsey & Company
With Iguazio we are able to scale up our organisations AI infrastructure which us vital to meet business goals and accelerate time-to-time. We are also able to manage our ML pipeline end-to-end using a full-stack,user-friendly environment, feature-rich integrated feature store and powerful data transformation and real-time feature engineering capabilities.
Read full review
Pros
Google
  • Vertex AI comes with support for LOTs of LLMs out of the box
  • MLOps tools are available that help to standardize operational aspects
  • Document AI is an out of the box feature that works just perfectly for our use cases of automating lots to tedious data extraction tasks from images as well as papers
Read full review
McKinsey & Company
  • Dynamic scaling capacity.
  • Central Metadata management.
  • Data ingestion and preparation.
Read full review
Cons
Google
  • Customization of AutoML models - A must needed capability to be able to tweak hyperparameters and also working with different models
  • Model Explainability -Providing more comprehensive explanations about how models are utilizing features could be very beneficial
  • Model versioning and experiments tracking - Enhancing the versioning capability could be good for end users
Read full review
McKinsey & Company
  • The user interface is not so much user-friendly, and easy-to-use, navigate.
Read full review
Performance
Google
It's not always instant, but understandable when it's under heavy load. It's not impressive nor disappointing, just what is expected. But when calling this platform through API's for it to do the actions requested there is minimal delay and wait time. It feels very responsive and quick when integrating it with a call center chat platform for example.
Read full review
McKinsey & Company
No answers on this topic
Alternatives Considered
Google
Vertex AI is much more accessible to non-developers than IBM's product. Moreover, Vertex AI integrates well with other Google products, enhancing its capabilities. A big plus is its integration with cloud storage, that allows for better management and access of data. In all honesty, it wasn't much of a difficult choice to choose Vertex AI.
Read full review
McKinsey & Company
Execution, experiment, data, model tracking, and automated deployment is done automatically through the MLRun serverless runtime engine. MLRun maintains a project hierarchy with strict membership and cross-team collaboration. End-to-end data governance is fully solidified and managed with authentication and identity management. Customers securely share data by providing access directly to it and not to copies.
Read full review
Return on Investment
Google
  • It is pay as you go model so it'll save more cost of your org. In our case previously we used to incurred 1-2L/Month now we are reduced it to 80k-1L.
  • It'll help you save your model training & model selection time as it provides pre-trained models in autoML.
  • It'll help you in terms of Security wherein we can use row level security access to authorized persons.
Read full review
McKinsey & Company
  • Is a fully integrated solution with a user-friendly portal.
  • Manage our ML pipeline end-to-end using Full-stack,user friendly environment.
  • Iguazio enables our teams to manage all artefacts throughout their lifecycle.
  • Enhance team work and collaboration in our teams.
Read full review
ScreenShots

Vertex AI Screenshots

Screenshot of an introduction to generative AI on Vertex AI - Vertex AI Studio offers a Google Cloud console tool for rapidly prototyping and testing generative AI models.Screenshot of gen AI for summarization, classification, and extraction - Text prompts can be created to handle any number of tasks with Vertex AI’s generative AI support. Some of the most common tasks are classification, summarization, and extraction. Vertex AI’s PaLM API for text can be used to design prompts with flexibility in terms of their structure and format.Screenshot of Custom ML training overview and documentation - An overview of the custom training workflow in Vertex AI, the benefits of custom training, and the various training options that are available. This page also details every step involved in the ML training workflow from preparing data to predictions.Screenshot of ML model training and creation -  A guide that shows how Vertex AI’s AutoML is used to create and train custom machine learning models with minimal effort and machine learning expertise.Screenshot of deployment for batch or online predictions - When using a model to solve a real-world problem, the Vertex AI prediction service can be used for batch and online predictions.