Vertex AI on Google Cloud is an MLOps solution, used to build, deploy, and scale machine learning (ML) models with fully managed ML tools for any use case.
$0
Starting at
TensorFlow
Score 7.7 out of 10
N/A
TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.
N/A
Pricing
Vertex AI
TensorFlow
Editions & Modules
Imagen model for image generation
$0.0001
Starting at
Text, chat, and code generation
$0.0001
per 1,000 characters
Text data upload, training, deployment, prediction
$0.05
per hour
Video data training and prediction
$0.462
per node hour
Image data training, deployment, and prediction
$1.375
per node hour
No answers on this topic
Offerings
Pricing Offerings
Vertex AI
TensorFlow
Free Trial
Yes
No
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
Optional
No setup fee
Additional Details
Pricing is based on the Vertex AI tools and services, storage, compute, and Google Cloud resources used.
Vertex AI seems to be a lot more accurate with image editing versus other competitors (including free one). We do a lot of image creation, especially of dogs in very certain scenarios. We use Adobe Stock to get us started, but many times we need some very specific edits done to the image. We've found Vertex can produce those with a lot more precision than other AI image generators.
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
Vertex AI comes with support for LOTs of LLMs out of the box
MLOps tools are available that help to standardize operational aspects
Document AI is an out of the box feature that works just perfectly for our use cases of automating lots to tedious data extraction tasks from images as well as papers
Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
It's not always instant, but understandable when it's under heavy load. It's not impressive nor disappointing, just what is expected. But when calling this platform through API's for it to do the actions requested there is minimal delay and wait time. It feels very responsive and quick when integrating it with a call center chat platform for example.
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
Vertex AI is much more accessible to non-developers than IBM's product. Moreover, Vertex AI integrates well with other Google products, enhancing its capabilities. A big plus is its integration with cloud storage, that allows for better management and access of data. In all honesty, it wasn't much of a difficult choice to choose Vertex AI.
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice