An open-source end-to-end GenAI platform for air-gapped, on-premises or cloud VPC deployments. Users can Query and summarize documents or just chat with local private GPT LLMs using h2oGPT, an Apache V2 open-source project. And the commercially available Enterprise h2oGPTe provides information retrieval on internal data, privately hosts LLMs, and secures data.
N/A
Snowflake
Score 8.8 out of 10
N/A
The Snowflake Cloud Data Platform is the eponymous data warehouse with, from the company in San Mateo, a cloud and SQL based DW that aims to allow users to unify, integrate, analyze, and share previously siloed data in secure, governed, and compliant ways. With it, users can securely access the Data Cloud to share live data with customers and business partners, and connect with other organizations doing business as data consumers, data providers, and data service providers.
Most suited if in little time you wanted to build and train a model. Then, H2O makes life very simple. It has support with R, Python and Java, so no programming dependency is required to use it. It's very simple to use. If you want to modify or tweak your ML algorithm then H2O is not suitable. You can't develop a model from scratch.
Snowflake is well suited when you have to store your data and you want easy scalability and increase or decrease the storage per your requirement. You can also control the computing cost, and if your computing cost is less than or equal to 10% of your storage cost, then you don't have to pay for computing, which makes it cost-effective as well.
Snowflake scales appropriately allowing you to manage expense for peak and off peak times for pulling and data retrieval and data centric processing jobs
Snowflake offers a marketplace solution that allows you to sell and subscribe to different data sources
Snowflake manages concurrency better in our trials than other premium competitors
Snowflake has little to no setup and ramp up time
Snowflake offers online training for various employee types
Do not force customers to renew for same or higher amount to avoid loosing unused credits. Already paid credits should not expire (at least within a reasonable time frame), independent of renewal deal size.
SnowFlake is very cost effective and we also like the fact we can stop, start and spin up additional processing engines as we need to. We also like the fact that it's easy to connect our SQL IDEs to Snowflake and write our queries in the environment that we are used to
Because the fact that you can query tons of data in a few seconds is incredible, it also gives you a lot of functions to format and transform data right in your query, which is ideal when building data models in BI tools like Power BI, it is available as a connector in the most used BI tools worldwide.
We have had terrific experiences with Snowflake support. They have drilled into queries and given us tremendous detail and helpful answers. In one case they even figured out how a particular product was interacting with Snowflake, via its queries, and gave us detail to go back to that product's vendor because the Snowflake support team identified a fault in its operation. We got it solved without lots of back-and-forth or finger-pointing because the Snowflake team gave such detailed information.
Both are open source (though H2O only up to some level). Both comprise of deep learning, but H2O is not focused directly on deep learning, while Tensor Flow has a "laser" focus on deep learning. H2O is also more focused on scalability. H2O should be looked at not as a competitor but rather a complementary tool. The use case is usually not only about the algorithms, but also about the data model and data logistics and accessibility. H2O is more accessible due to its UI. Also, both can be accessed from Python. The community around TensorFlow seems larger than that of H2O.
I have had the experience of using one more database management system at my previous workplace. What Snowflake provides is better user-friendly consoles, suggestions while writing a query, ease of access to connect to various BI platforms to analyze, [and a] more robust system to store a large amount of data. All these functionalities give the better edge to Snowflake.
Positive impact: saving in infrastructure expenses - compared to other bulky tools this costs a fraction
Positive impact: ability to get quick fixes from H2O when problems arise - compared to waiting for several months/years for new releases from other vendors
Positive impact: Access to H2O core team and able to get features that are needed for our business quickly added to the core H2O product