Hortonworks Data Platform (HDP) is an open source framework for distributed storage and processing of large, multi-source data sets. HDP modernizes IT infrastructure and keeps data secure—in the cloud or on-premises—while helping to drive new revenue streams, improve customer experience, and control costs.
Hortonworks merged with Cloudera in eary 2019.
N/A
Db2 Big SQL
Score 8.9 out of 10
N/A
IBM offers Db2 Big SQL, an enterprise grade hybrid ANSI-compliant SQL on Hadoop engine, delivering massively parallel processing (MPP) and advanced data query. Big SQL offers a single database connection or query for disparate sources such as HDFS, RDMS, NoSQL databases, object stores and WebHDFS.
I find HDP easy to use and solves most of the problems for people looking to manage their big data. Evaluating the Hortonworks Data Platform is easy as it is free to download and install in your cluster. Single node cluster available as Sandbox is also easy for POCs.
My recommendation obviously would depend on the application. But I think given the right requirements, IBM DB2 Big SQL is definitely a contender for a database platform. Especially when disparate data and multiple data stores are involved. I like the fact I can use the product to federate my data and make it look like it's all in one place. The engine is high performance and if you desire to use Hadoop, this could be your platform.
It does a good job of packaging a lot of big data components into bundles and lets you use the ones you are interested in or need. It supports an extensive list of components which lets us solve many problems.
It provides the ability to manage installations and maintenance using Apache Ambari. It helps us in using management packs to install/upgrade components easily. It also helps us add, remove components, add, remove hosts, perform upgrades in a convenient manner. It also provides alerts and notifications and monitors the environment.
What they excel in is packaging open source components that are relevant and are useful to solve and complement each other as well as contribute to enhancing those components. They do a great job in the community to keep on top of what would be useful to users, fixing bugs and working with other companies and individuals to make the platform better.
Since it doesn't come with propriety tools for big data management, additional integration is need (for query handling, search, etc).
It was very straightforward to store clinical data without relations, such as data from sensors of a medical device. But it has limitations when needed to combine the data with other clinical data in structured format (e.g. lab results, diagnosis).
Overall look and feel of front-end management tools (e.g. monitoring) are not good. It is not bad but it doesn't look professional.
IBM DB2 is a solid service but hasn't seen much innovation over the past decade. It gets the job done and supports our IT operations across digital so it is fair.
IBM did a good job of supporting us during our evaluation and proof of concept. They were able to provide all necessary guidance, answer questions, help us architect it, etc. We were pleased with the support provided by the vendor. I will caveat and say this support was all before the sale, however, we have a ton of IBM products and they provide the same high level of support for all of them. I didn't see this being any different. I give IBM support two thumbs up!
We chose [Hortonworks Data Platform] because it's free and because [it] was an IBM partner, suggested as big data platform after biginsights platform.
You can install in more physical computer without high specs, then you can use it in order to learn how to deploy, configure a complete big data cluster.
We installed also in a cloud infrastructure of 5 virtual machine
MS SQL Server was ruled out given we didn't feel we could collapse environments. We thought of MS-SQL as more of a one for one replacement for Sybase ASE, i.e., server for server. SAP HANA was evaluated and given a big thumbs up but was rejected because the SQL would have to be rewritten at the time (now they have an accelerator so you don't have to). Also, there was a very low adoption rate within the enterprise. IBM DB2 Big SQL was not selected even though technically it achieved high scores, because we could not find readily available talent and low adoption rate within the enterprise (basically no adoption at the time). We ended up selecting Exadata because of the high adoption rate within the enterprise even though technically HANA and Big SQL were superior in our evaluations.