TensorFlow is an open-source machine learning software library for numerical computation using data flow graphs. It was originally developed by Google.
TensorFlow and Caffe are bit hard to learn but they give you power to implement everything by you own. But most of the time it is not required to implement our own algorithm, we can solve the problem with just using the already provided algorithms. As compared to TensorFlow and …
Keras is good to develop deep learning models. As compared to TensorFlow, it's easy to write code in Keras. You have more power with TensorFlow but also have a high error rate because you have to configure everything by your own. And as compared to MATLAB, I will always prefer …
Keras is a good point where you can learn lots of things and also have hands-on experience. There is not much comparison of Keras with Tensorlow, as Keras is a wrapper library which supports TensorFlow and Theano as backends for computation. But once you have enough knowledge …
As Keras is the high level API, so using Keras, we don't have to be bothered by the low level TensorFlow complexity, and we can reduce a lot coding and testing efforts.
One major advantage of TensorFlow over Keras and other deep learning libraries is that it is the most powerful. It gives you power to write your own full customised algorithm that is not available in Keras. And it is fast too as compared to another tool as it can perform better …
I have used Keras and MATLAB along with this. Also used Caffe and pyTorch sometimes, but all of them are not as powerful as TensorFlow. Keras is in good competition with TensorFlow but Keras won't allow you a lot of customization in your algorithms. And TensorFlow gives you the …
There are lots of competitors with this library, but I think TensorFlow is the best thing for deep learning. Although it has a sharp learning curve, it's worth learning. It easy to deploy its model on Android. Keras is very good option too it, easy. In Keras, writing the neural …
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, …
I prefer Pytorch overall, recent models are often only available with Pytorch Pytorch is also easier to use and it is often easier to find support for Pytorch code nowadays than TensorFlow Also it seems like lots of Google internal resource uses JAX. I mostly uses TensorFlow to …
TensorFlow provides a wide range of algorithms with more detail and customization options compared to others. Also, the library is advanced and updates regularly for optimization and new functions.
I have used Theano to develop machine learning models, like writing the neural network. TensorFlow has reinforcement learning support and lot more algorithms while Theano does come with lots of prebuilt tools. TensorFlow provides data visualisation tools and it is possible to …
Keras is quite perfect, if the aim is to build the standard Deep Learning model, and materialize it to serve the real business use case, while it is not suitable if the purpose is for research and a lot of non-standard try out and customization are required, in that case either directly goes to low level TensorFlow API or Pytorch
TensorFlow is great for most deep learning purposes. This is especially true in two domains: 1. Computer vision: image classification, object detection and image generation via generative adversarial networks 2. Natural language processing: text classification and generation. The good community support often means that a lot of off-the-shelf models can be used to prove a concept or test an idea quickly. That, and Google's promotion of Colab means that ideas can be shared quite freely. Training, visualizing and debugging models is very easy in TensorFlow, compared to other platforms (especially the good old Caffe days). In terms of productionizing, it's a bit of a mixed bag. In our case, most of our feature building is performed via Apache Spark. This means having to convert Parquet (columnar optimized) files to a TensorFlow friendly format i.e., protobufs. The lack of good JVM bindings mean that our projects end up being a mix of Python and Scala. This makes it hard to reuse some of the tooling and support we wrote in Scala. This is where MXNet shines better (though its Scala API could do with more work).
One of the reason to use Keras is that it is easy to use. Implementing neural network is very easy in this, with just one line of code we can add one layer in the neural network with all it's configurations.
It provides lot of inbuilt thing like cov2d, conv2D, maxPooling layers. So it makes fast development as you don't need to write everything on your own. It comes with lot of data processing libraries in it like one hot encoder which also makes your development easy and fast.
It also provides functionality to develop models on mobile device.
Theano is perhaps a bit faster and eats up less memory than TensorFlow on a given GPU, perhaps due to element-wise ops. Tensorflow wins for multi-GPU and “compilation” time.
Community support for TensorFlow is great. There's a huge community that truly loves the platform and there are many examples of development in TensorFlow. Often, when a new good technique is published, there will be a TensorFlow implementation not long after. This makes it quick to ally the latest techniques from academia straight to production-grade systems. Tooling around TensorFlow is also good. TensorBoard has been such a useful tool, I can't imagine how hard it would be to debug a deep neural network gone wrong without TensorBoard.
Keras is good to develop deep learning models. As compared to TensorFlow, it's easy to write code in Keras. You have more power with TensorFlow but also have a high error rate because you have to configure everything by your own. And as compared to MATLAB, I will always prefer Keras as it is easy and powerful as well.
Keras is built on top of TensorFlow, but it is much simpler to use and more Python style friendly, so if you don't want to focus on too many details or control and not focus on some advanced features, Keras is one of the best options, but as far as if you want to dig into more, for sure TensorFlow is the right choice