The Vertica Analytics Platform supplies enterprise data warehouses with big data analytics capabilities and modernization. Vertica is owned and supported by OpenText.
N/A
ParAccel
Score 8.8 out of 10
N/A
ParAccel was a data warehouse appliance (DWA) option, offered by Actian since the April 2013 acquisition of ParAccel as Actian Matrix, that has since been discontinued.
N/A
Pricing
OpenText Vertica
ParAccel
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
OpenText Vertica
ParAccel
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
OpenText Vertica
ParAccel
Considered Both Products
OpenText Vertica
No answer on this topic
ParAccel
Verified User
Employee
Chose ParAccel
My comparison with Vertica: ParAccel stays at top because we do not know the projections ahead of time (which is a major performance tuning technique in Vertica)
My comparison with Netezza/Teradata: Definitely, ParAccel is economical, but if you can afford it, go for other …
Vertica as a data warehouse to deliver analytics in-house and even to your client base on scale is not rivaled anywhere in the market. Frankly, in my experience it is not even close to equaled. Because it is such a powerful data warehouse, some people attempt to use it as a transactional database. It certainly is not one of those. Individual row inserts are slow and do not perform well. Deletes are a whole other story. RDBMS it is definitely not. OLAP it rocks.
Actian matrix is not good for small data sets. If you have a limited data pool, or do not plan on having multiple users/clients accessing a data source, stick with a more traditional relational database model - Access for the truly small user base, or a DB2 or Oracle back end if your going to have multiple users, and moderate sized data. Actian is for LARGE data sets (Big Data, in the industry parlance). Millions of rows of data from multiple sources with various down stream systems accessing the database. It is for data analytics of large data groups and intense data mining.
Could use some work on better integrating with cloud providers and open source technologies. For AWS you will find an AMI in the marketplace and recently a connector for loading data from S3 directly was created. With last release, integration with Kafka was added that can help.
Managing large workloads (concurrent queries) is a bit challenging.
Having a way to provide an estimate on the duration for currently executing queries / etc. can be helpful. Vertica provides some counters for the query execution engine that are helpful but some may find confusing.
Unloading data over JDBC is very slow. We've had to come up with alternatives based on vsql, etc. Not a very clean, official on how to unload data.
I haven't had any recent opportunity to reach out to Vertica support. From what I remember, I believe whenever I reached out to them the experience was smooth.
Vertica performs well when the query has good stats and is tuned well. Options for GUI clients are ugly and outdated. IO optimized: it's a columnar store with no indexing structures to maintain like traditional databases. The indexing is achieved by storing the data sorted on disk, which itself is run transparently as a background process.
Actian Matrix is our first big data analytics storage platform, and as I was not involved in the POC process to compare it to other products out on the market, unfortunately I cannot say if it is better than other Big Data storage options. I can say that it out performs products such as Oracle or UDB in regards to the volume of data it can easily index and handle.