SAP Data Intelligence is presented by the vendor as a single solution to innovate with data. It provides data-driven innovation in the cloud, on premise, and through BYOL deployments. It is described by the vendor as the new evolution of the company's data orchestration and management solution running on Kubernetes, released by SAP in 2017 to deal with big data and complex data orchestration working across distributed landscapes and processing engine.
N/A
SSIS
Score 8.0 out of 10
N/A
Microsoft's SQL Server Integration Services (SSIS) is a data integration solution.
If you have an SAP products ecosystem in your IT landscape, it becomes a no-brainer to go ahead with an SAP Data Intelligence product for your data orchestration, data management, and advanced data analytics needs, such as data preparation for your AI/ML processes. It provides a seamless integration with other SAP products.
Ideal for daily standard ETL use cases whether the data is sourced from / transferred to the native connectors (like SQL Server) or FTP. Best if the company uses MS suite of tools. There are better options in the market for chaining tasks where you want a custom flow of executions depending on the outcome of each process or if you want advanced functionality like API connections, etc.
Data transfer speed tends to be slow when there is poor internet connection since SAP Data Intelligence don’t synchronize data while offline. However, this is not vendor fault, that’s why we have implemented robust wireless technology internet connection in our organization.
SSIS has been a bit neglected by Microsoft and new features are slow in coming.
When importing data from flat files and Excel workbooks, changes in the data structure will cause the extracts to fail. Workarounds do exist but are not easily implemented. If your source data structure does not change or rarely changes, this negative is relatively insignificant.
While add-on third-party SSIS tools exist, there are only a small number of vendors actively supporting SSIS and license fees for production server use can be significant especially in highly-scaled environments.
Allow collaborations among various personas with insights as ratings and comments on the datasets Reuse knowledges on the datasets for new users Next-Gen Data Management and Artificial Intelligence
Some features should be revised or improved, some tools (using it with Visual Studio) of the toolbox should be less schematic and somewhat more flexible. Using for example, the CSV data import is still very old-fashioned and if the data format changes it requires a bit of manual labor to accept the new data structure
I think the troubleshooting process might be streamlined with improved error recording and tracing. A lot of information about issues and how to fix them is hidden away in the Kubernetes pods themselves. I'm not sure whether SAP Data Intelligence can fix this problem it may be connected to Kubernetes's design, in which case fixing it could need modifications inside Kubernetes itself.
SQL Server Integration Services is a relatively nice tool but is simply not the ETL for a global, large-scale organization. With developing requirements such as NoSQL data, cloud-based tools, and extraordinarily large databases, SSIS is no longer our tool of choice.
Raw performance is great. At times, depending on the machine you are using for development, the IDE can have issues. Deploying projects is very easy and the tool set they give you to monitor jobs out of the box is decent. If you do very much with it you will have to write into your projects performance tracking though.
Initially we struggle to get help from SAP but then dedicated Dev angel was assigned to us and that simplify the overall support scenario. There is still room of improvement in documentation around SAP Data intelligence. We struggle a lot to initially understand the feature and required help around performance improvement area,
The support, when necessary, is excellent. But beyond that, it is very rarely necessary because the user community is so large, vibrant and knowledgable, a simple Google query or forum question can answer almost everything you want to know. You can also get prewritten script tasks with a variety of functionality that saves a lot of time.
The implementation may be different in each case, it is important to properly analyze all the existing infrastructure to understand the kind of work needed, the type of software used and the compatibility between these, the features that you want to exploit, to understand what is possible and which ones require integration with third-party tools
One of the reasons to pick SAP Data Intelligence is the speed and security it provides, in addition to the excellent support it provides. It is also compatible with all popular databases, which is another reason to choose it.
I had nothing to do with the choice or install. I assume it was made because it's easy to integrate with our SQL Server environment and free. I'm not sure of any other enterprise level solution that would solve this problem, but I would likely have approached it with traditional scripting. Comparably free, but my own familiarity with trad scripts would be my final deciding factor. Perhaps with some further training on SSIS I would have a different answer.