Amazon CloudSearch is enterprise search as a service, from Amazon Web Services.
N/A
Coveo Relevance Cloud
Score 7.9 out of 10
N/A
Coveo is an enterprise search technology which can index data on disparate cloud systems making it easier to retrieve. It has integrated plug-ins for Salesforce.com, Sitecore CEP, and Microsoft Outlook and SharePoint.
$600
per month
Elasticsearch
Score 8.7 out of 10
N/A
Elasticsearch is an enterprise search tool from Elastic in Mountain View, California.
Amazon Cloudsearch can be suitable for some queries that require fast data. For example, in our case, we used CloudSearch, in a tool called Global Search. That will search everything like names, emails and a lot of stuff in our application. If you want fast data and you have a simple query, Global Search isn't appropriate for you.
Coveo Relevance Cloud is a great solution to implement into Salesforce to provide Knowledge-Centered Support, Enhancements to a Customer Community, to provide sales aids, or to complement your customized app in Salesforce.
Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand!
Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast!
Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster.
It would be great if Coveo 6 allowed you to rebuild indexes from a certain subtree instead of needing to rebuild the entire tree to see changes. This functionality was added in Coveo 7 and is very useful.
In Coveo 6, integration with Sitecore is more difficult than one would expect. This integration is much improved in Coveo 7.
I have seen cases where an exception thrown when crawling a specific document will cause the indexing to stop completely. I believe this only happens in implementations using custom faceting but it could be handled more efficiently if the trouble document was skipped and the indexing could continue.
Relevancy ranking editor is good but not as powerful as GSA. GSA offers a self-learning scorer which automatically analyzes user behavior and the specific links that users click on for specific queries to fine tune relevance and scoring.
We've ran into issues on multiple clients with Sitecore items being indexed multiple times in Sitecore 7 and Coveo 7. The fix Coveo suggested was to upgrade our Sitecore version and Coveo but unfortunately this didn't resolve our issue. After months of testing we were finally able to resolve this by implementing our own CoveoItemCrawler to get around the issue (based on https://developers.coveo.com/display/public/SC201404/Items+in+the+Same+Language+Gets+Indexed+Multiple+Times;jsessionid=3C1A2AE33540E0A0B8BB52BA3A64AF70).
Integration with RabbitMQ in Coveo 7 seems error prone. We often see the error "The AMQP operation was interrupted" and on occasion, need to restart the Coveo service to get this operating again. In some extreme cases, we have also had to restart the server because of issues when attempting to restart the Coveo service.
To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
I didn't investigate the best alternatives to CloudSearch, but did help with implementing this feature in our application. But from what i tested and used - Cloudsearch is very fast to get queries. Some negative points can be the time to implement this and some configurations that can be tricky.
As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
Quick to find things in a massive database when needed.
Results need to be more concise - sometimes we spend more time looking for the right file than if we were to just search amongst our own networks instead.
Coveo is not always the most useful but does its job when general information is needed.
We have had great luck with implementing Elasticsearch for our search and analytics use cases.
While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled.
We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems.