Amazon DocumentDB (with MongoDB compatibility) is presented by the vendor as a fast, scalable, highly available, and fully managed document database service that supports MongoDB workloads. As a document database, Amazon DocumentDB is designed to make it easy to store, query, and index JSON data.
N/A
HBase
Score 7.3 out of 10
N/A
The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
N/A
Pricing
Amazon DocumentDB (with MongoDB compatibility)
Apache HBase
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon DocumentDB (with MongoDB compatibility)
HBase
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon DocumentDB (with MongoDB compatibility)
Apache HBase
Features
Amazon DocumentDB (with MongoDB compatibility)
Apache HBase
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
AWS Document DB (with MongoDB compatibility) is well suited when for all the workloads due to its huge feature offerings which will reduce our operational overhead and due to that we can focus more on our WorkLoad rather than optimising and fine tuning Databases. Its Offerings are Advanced Monitoring, DB cluster Upgrades, Migration Assistant, High Availability, Fault Tolerance, Data Durability, Security, Storage Auto Scaling, Backup Restore policies.AWS Document DB (with MongoDB compatibility) some of the features that are there in some other services like MongoDB Atlas that offers vast amount of features plus Supports Multi Cloud while Deploying Database clusters, Immediate support to latest Mongo DB versions, Mobile & Edge Sync like Atlas Edge Sync, Freedom to choose Database deployment in Any top Public Cloud, Having more then 100 plus Monitoring and Telemetry metrics for index and schema recommendations, More Compatibility with MongoDB queries.
Hbase is well suited for large organizations with millions of operations performing on tables, real-time lookup of records in a table, range queries, random reads and writes and online analytics operations. Hbase cannot be replaced for traditional databases as it cannot support all the features, CPU and memory intensive. Observed increased latency when using with MapReduce job joins.
Amazon DocumentDB (with MongoDB compatibility) provides Auto scaling of cluster as a by default functionality through this we can focus on more on our applications end
Through AWS Document DB without much operation overhead we can configure for Database's high availability, Durability, Backup Restores policies, Advanced Monitoring, Security Parameters.
Also they can provide us a Guide for Database Migration from any Supported Mongo DB vendor to AWS Document DB.
Via AWS Document DB query Logging ( Profiling ) we can fine tune our database queries and hence improving our END to END Customer Experience and Product Enhancements.
Stored procedures functionality is not available so it should be implemented.
HBase is CPU and Memory intensive with large sequential input or output access while as Map Reduce jobs are primarily input or output bound with fixed memory. HBase integrated with Map-reduce jobs will result in random latencies.
There's really not anything else out there that I've seen comparable for my use cases. HBase has never proven me wrong. Some companies align their whole business on HBase and are moving all of their infrastructure from other database engines to HBase. It's also open source and has a very collaborative community.
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work to an extent. HA between the two are almost the same.
As Hbase is a noSql database, here we don't have transaction support and we cannot do many operations on the data.
Not having the feature of primary or a composite primary key is an issue as the architecture to be defined cannot be the same legacy type. Also the transaction concept is not applicable here.
The way data is printed on console is not so user-friendly. So we had to use some abstraction over HBase (eg apache phoenix) which means there is one new component to handle.