Amazon SageMaker vs. Databricks Data Intelligence Platform

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon SageMaker
Score 8.1 out of 10
N/A
Amazon SageMaker enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. Amazon SageMaker removes all the barriers that typically slow down developers who want to use machine learning.N/A
Databricks Data Intelligence Platform
Score 8.7 out of 10
N/A
Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run…
$0.07
Per DBU
Pricing
Amazon SageMakerDatabricks Data Intelligence Platform
Editions & Modules
No answers on this topic
Standard
$0.07
Per DBU
Premium
$0.10
Per DBU
Enterprise
$0.13
Per DBU
Offerings
Pricing Offerings
Amazon SageMakerDatabricks Data Intelligence Platform
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon SageMakerDatabricks Data Intelligence Platform
Top Pros
Top Cons
Best Alternatives
Amazon SageMakerDatabricks Data Intelligence Platform
Small Businesses
Saturn Cloud
Saturn Cloud
Score 8.1 out of 10

No answers on this topic

Medium-sized Companies
DataRobot
DataRobot
Score 8.6 out of 10
Amazon Athena
Amazon Athena
Score 9.0 out of 10
Enterprises
DataRobot
DataRobot
Score 8.6 out of 10
Amazon Athena
Amazon Athena
Score 9.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon SageMakerDatabricks Data Intelligence Platform
Likelihood to Recommend
9.0
(5 ratings)
10.0
(18 ratings)
Usability
-
(0 ratings)
10.0
(4 ratings)
Support Rating
-
(0 ratings)
8.7
(2 ratings)
Contract Terms and Pricing Model
-
(0 ratings)
8.0
(1 ratings)
Professional Services
-
(0 ratings)
10.0
(1 ratings)
User Testimonials
Amazon SageMakerDatabricks Data Intelligence Platform
Likelihood to Recommend
Amazon AWS
It allows for one-click processes and for things to be auto checked before they are moved through the process but through the system. It also makes training easy. I am able to train users on the basic fundamentals of the tool and how it is used very easily as it is fully managed on its own which is incredible.
Read full review
Databricks
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
Read full review
Pros
Amazon AWS
  • Machine Learning at scale by deploying huge amount of training data
  • Accelerated data processing for faster outputs and learnings
  • Kubernetes integration for containerized deployments
  • Creating API endpoints for use by technical users
Read full review
Databricks
  • Process raw data in One Lake (S3) env to relational tables and views
  • Share notebooks with our business analysts so that they can use the queries and generate value out of the data
  • Try out PySpark and Spark SQL queries on raw data before using them in our Spark jobs
  • Modern day ETL operations made easy using Databricks. Provide access mechanism for different set of customers
Read full review
Cons
Amazon AWS
  • It's very good for the hardcore programmer, but a little bit complex for a data scientist or new hire who does not have a strong programming background.
  • Most of the popular library and ML frameworks are there, but we still have to depend on them for new releases.
Read full review
Databricks
  • Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
  • Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
  • Visualization in MLFLOW experiment can be enhanced
Read full review
Usability
Amazon AWS
No answers on this topic
Databricks
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.

in terms of graph generation and interaction it could improve their UI and UX
Read full review
Support Rating
Amazon AWS
No answers on this topic
Databricks
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
Read full review
Alternatives Considered
Amazon AWS
Amazon SageMaker took the heavy lifting out of building and creating models. It allowed for our organization to use our current system for integration and essentially added on a feature to help all levels of Data scientists and IT professionals in our department and company as a whole. The training was simple as well.
Read full review
Databricks
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.
Read full review
Return on Investment
Amazon AWS
  • We have been able to deliver data products more rapidly because we spend less time building data pipelines and model servers.
  • We can prototype more rapidly because it is easy to configure notebooks to access AWS resources.
  • For our use-cases, serving models is less expensive with SageMaker than bespoke servers.
Read full review
Databricks
  • The ability to spin up a BIG Data platform with little infrastructure overhead allows us to focus on business value not admin
  • DB has the ability to terminate/time out instances which helps manage cost.
  • The ability to quickly access typical hard to build data scenarios easily is a strength.
Read full review
ScreenShots