Amazon Tensor Flow vs. Torch

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon Tensor Flow
Score 8.0 out of 10
N/A
Amazon TensorFlow enables developers to quickly and easily get started with deep learning in the cloud.N/A
Torch
Score 9.0 out of 10
N/A
Torch is a scientific computing framework with wide support for machine learning algorithms.N/A
Pricing
Amazon Tensor FlowTorch
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Amazon Tensor FlowTorch
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon Tensor FlowTorch
Best Alternatives
Amazon Tensor FlowTorch
Small Businesses
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon Tensor FlowTorch
Likelihood to Recommend
9.0
(1 ratings)
-
(0 ratings)
User Testimonials
Amazon Tensor FlowTorch
Likelihood to Recommend
Amazon AWS
A well-suited scenario for using AWS Tensor Flow is when having a project with a geographically dispersed team, a client overseas and large data to use for training. AWS Tensor Flow is less appropriate when working for clients in regions where it hasn't been allowed yet for use. Since smaller clients are in regions where AWS Tensor Flow hasn't been allowed for use, and those clients traditionally don't have enough hardware, this situation deters a wider use of the tool.
Read full review
Open Source
No answers on this topic
Pros
Amazon AWS
  • Amazon Elastic Compute Cloud (EC2) allows resizable compute capacity in the cloud, providing the necessary elasticity to provide services for both, small and medium-sized businesses.
  • Tensor Flow allows us to train our models much faster than in our on-premise equipment.
  • Most of the pre-trained models are easy to adapt to our clients' needs.
Read full review
Open Source
No answers on this topic
Cons
Amazon AWS
  • SageMaker isn't available in all regions. This is complicated for some clients overseas.
  • For larger instances, when using a GPU, it takes a while to talk to a customer service representative to ask for a limit increase. Given this, it's recommendable to ask in advance for a limit increase in more expensive and larger cases; otherwise, SageMaker will set the limit to zero by default.
  • Since the data has to be stored in S3 and copied to training, it doesn't allow to test and debug locally. Therefore, we have to wait a lot to check everything after every trail.
Read full review
Open Source
No answers on this topic
Alternatives Considered
Amazon AWS
Microsoft Azure is better than Amazon Tensor Flow because it provides easier and pre-built capabilities such as Anomaly Detection, Recommendation, and Ranking. AWS is better than IBM Watson ML Studio because it has direct and prebuilt clustering capabilities AWS, like IBM Watson ML Studio, has powerful built-in algorithms, providing a stronger platform when comparing it with MS Azure ML Services and Google ML Engine.
Read full review
Open Source
No answers on this topic
Return on Investment
Amazon AWS
  • Positive: It has allowed us to work with our overseas teams without any large hardware investing.
  • Positive: Pre-trained models significantly reduce the time to develop solutions for our clients.
  • Negative: Since it's a relatively new tool, you have to be careful about not paying for large errors while learning to use the tool.
Read full review
Open Source
No answers on this topic
ScreenShots