Likelihood to Recommend I have asked all my juniors to work with Anaconda and Pycharm only, as this is the best combination for now. Coming to use cases: 1. When you have multiple applications using multiple Python variants, it is a really good tool instead of Venv (I never like it). 2. If you have to work on multiple tools and you are someone who needs to work on data analytics, development, and machine learning, this is good. 3. If you have to work with both R and Python, then also this is a good tool, and it provides support for both.
Read full review Organizations which already implemented on-premise Hadoop based Cloudera Data Platform (CDH) for their Big Data warehouse architecture will definitely get more value from seamless integration of Cloudera Data Science Workbench (CDSW) with their existing CDH Platform. However, for organizations with hybrid (cloud and on-premise) data platform without prior implementation of CDH, implementing CDSW can be a challenge technically and financially.
Read full review Pros Anaconda is a one-stop destination for important data science and programming tools such as Jupyter, Spider, R etc. Anaconda command prompt gave flexibility to use and install multiple libraries in Python easily. Jupyter Notebook, a famous Anaconda product is still one of the best and easy to use product for students like me out there who want to practice coding without spending too much money. Read full review One single IDE (browser based application) that makes Scala, R, Python integrated under one tool For larger organizations/teams, it lets you be self reliant As it sits on your cluster, it has very easy access of all the data on the HDFS Linking with Github is a very good way to keep the code versions intact Read full review Cons It can have a cloud interface to store the work. Compatible for large size files. I used R Studio for building Machine Learning models, Many times when I tried to run the entire code together the software would crash. It would lead to loss of data and changes I made. Read full review Installation is difficult. Upgrades are difficult. Licensing options are not flexible. Read full review Likelihood to Renew It's really good at data processing, but needs to grow more in publishing in a way that a non-programmer can interact with. It also introduces confusion for programmers that are familiar with normal Python processes which are slightly different in Anaconda such as virtualenvs.
Read full review Usability I am giving this rating because I have been using this tool since 2017, and I was in college at that time. Initially, I hesitated to use it as I was not very aware of the workings of Python and how difficult it is to manage its dependency from project to project. Anaconda really helped me with that. The first machine-learning model that I deployed on the Live server was with Anaconda only. It was so managed that I only installed libraries from the requirement.txt file, and it started working. There was no need to manually install cuda or tensor flow as it was a very difficult job at that time. Graphical data modeling also provides tools for it, and they can be easily saved to the system and used anywhere.
Read full review Support Rating Anaconda provides fast support, and a large number of users moderate its online community. This enables any questions you may have to be answered in a timely fashion, regardless of the topic. The fact that it is based in a Python environment only adds to the size of the online community.
Read full review Cloudera Data Science Workbench has excellence online resources support such as documentation and examples. On top of that the enterprise license also comes with SLA on opening a ticket to Cloudera Services and support for complaint handling and troubleshooting by email or through a phone call. On top of that it also offers additional paid training services.
Read full review Alternatives Considered I have experience using
RStudio oustide of Anaconda.
RStudio can be installed via anaconda, but I like to use
RStudio separate from Anaconda when I am worin in R. I tend to use Anaconda for python and
RStudio for working in R. Although installing libraries and packages can sometimes be tricky with both
RStudio and Anaconda, I like installing R packages via
RStudio . However, for anything python-related, Anaconda is my go to!
Read full review Both the tools have similar features and have made it pretty easy to install/deploy/use. Depending on your existing platform (Cloudera vs. Azure) you need to pick the Workbench. Another observation is that Cloudera has better support where you can get feedback on your questions pretty fast (unlike MS). As its a new product, I expect MS to be more efficient in handling customers questions.
Read full review Return on Investment It has helped our organization to work collectively faster by using Anaconda's collaborative capabilities and adding other collaboration tools over. By having an easy access and immediate use of libraries, developing times has decreased more than 20 % There's an enormous data scientist shortage. Since Anaconda is very easy to use, we have to be able to convert several professionals into the data scientist. This is especially true for an economist, and this my case. I convert myself to Data Scientist thanks to my econometrics knowledge applied with Anaconda. Read full review Paid off for demonstration purposes. Read full review ScreenShots