Apache Airflow vs. AWS Lambda

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Airflow
Score 8.6 out of 10
N/A
Apache Airflow is an open source tool that can be used to programmatically author, schedule and monitor data pipelines using Python and SQL. Created at Airbnb as an open-source project in 2014, Airflow was brought into the Apache Software Foundation’s Incubator Program 2016 and announced as Top-Level Apache Project in 2019. It is used as a data orchestration solution, with over 140 integrations and community support.N/A
AWS Lambda
Score 8.5 out of 10
N/A
AWS Lambda is a serverless computing platform that lets users run code without provisioning or managing servers. With Lambda, users can run code for virtually any type of app or backend service—all with zero administration. It takes of requirements to run and scale code with high availability.
$NaN
Per 1 ms
Pricing
Apache AirflowAWS Lambda
Editions & Modules
No answers on this topic
128 MB
$0.0000000021
Per 1 ms
1024 MB
$0.0000000167
Per 1 ms
10240 MB
$0.0000001667
Per 1 ms
Offerings
Pricing Offerings
Apache AirflowAWS Lambda
Free Trial
NoNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache AirflowAWS Lambda
Features
Apache AirflowAWS Lambda
Workload Automation
Comparison of Workload Automation features of Product A and Product B
Apache Airflow
8.8
12 Ratings
5% above category average
AWS Lambda
-
Ratings
Multi-platform scheduling9.312 Ratings00 Ratings
Central monitoring9.012 Ratings00 Ratings
Logging8.612 Ratings00 Ratings
Alerts and notifications9.312 Ratings00 Ratings
Analysis and visualization6.912 Ratings00 Ratings
Application integration9.312 Ratings00 Ratings
Access Control and Security
Comparison of Access Control and Security features of Product A and Product B
Apache Airflow
-
Ratings
AWS Lambda
8.9
7 Ratings
1% above category average
Multiple Access Permission Levels (Create, Read, Delete)00 Ratings8.67 Ratings
Single Sign-On (SSO)00 Ratings9.23 Ratings
Reporting & Analytics
Comparison of Reporting & Analytics features of Product A and Product B
Apache Airflow
-
Ratings
AWS Lambda
5.2
6 Ratings
14% below category average
Dashboards00 Ratings5.86 Ratings
Standard reports00 Ratings5.45 Ratings
Custom reports00 Ratings4.55 Ratings
Function as a Service (FaaS)
Comparison of Function as a Service (FaaS) features of Product A and Product B
Apache Airflow
-
Ratings
AWS Lambda
8.6
7 Ratings
5% above category average
Programming Language Diversity00 Ratings9.07 Ratings
Runtime API Authoring00 Ratings8.17 Ratings
Function/Database Integration00 Ratings8.87 Ratings
DevOps Stack Integration00 Ratings8.47 Ratings
Best Alternatives
Apache AirflowAWS Lambda
Small Businesses

No answers on this topic

IBM Cloud Functions
IBM Cloud Functions
Score 7.4 out of 10
Medium-sized Companies
ActiveBatch Workload Automation
ActiveBatch Workload Automation
Score 7.6 out of 10
Red Hat OpenShift
Red Hat OpenShift
Score 9.2 out of 10
Enterprises
Control-M
Control-M
Score 9.3 out of 10
Red Hat OpenShift
Red Hat OpenShift
Score 9.2 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache AirflowAWS Lambda
Likelihood to Recommend
8.8
(12 ratings)
8.0
(52 ratings)
Usability
8.3
(3 ratings)
8.3
(17 ratings)
Support Rating
-
(0 ratings)
8.7
(20 ratings)
User Testimonials
Apache AirflowAWS Lambda
Likelihood to Recommend
Apache
Airflow is well-suited for data engineering pipelines, creating scheduled workflows, and working with various data sources. You can implement almost any kind of DAG for any use case using the different operators or enforce your operator using the Python operator with ease. The MLOps feature of Airflow can be enhanced to match MLFlow-like features, making Airflow the go-to solution for all workloads, from data science to data engineering.
Read full review
Amazon AWS
Lambda excels at event-driven, short-lived tasks, such as processing files or building simple APIs. However, it's less ideal for long-running, computationally intensive, or applications that rely on carrying the state between jobs. Cold starts and constant load can easily balloon the costs.
Read full review
Pros
Apache
  • Apache Airflow is one of the best Orchestration platforms and a go-to scheduler for teams building a data platform or pipelines.
  • Apache Airflow supports multiple operators, such as the Databricks, Spark, and Python operators. All of these provide us with functionality to implement any business logic.
  • Apache Airflow is highly scalable, and we can run a large number of DAGs with ease. It provided HA and replication for workers. Maintaining airflow deployments is very easy, even for smaller teams, and we also get lots of metrics for observability.
Read full review
Amazon AWS
  • No provisioning required - we don't have to pay anything upfront
  • Serverless deployment - it gets executed only when request comes and we pay only for the time the request is getting executed
  • Integrates well with AWS CloudWatch triggers so it is easy to setup scheduled tasks like cron jobs
Read full review
Cons
Apache
  • UI/Dashboard can be updated to be customisable, and jobs summary in groups of errors/failures/success, instead of each job, so that a summary of errors can be used as a starting point for reviewing them.
  • Navigation - It's a bit dated. Could do with more modern web navigation UX. i.e. sidebars navigation instead of browser back/forward.
  • Again core functional reorg in terms of UX. Navigation can be improved for core functions as well, instead of discovery.
Read full review
Amazon AWS
  • Developing test cases for Lambda functions can be difficult. For functions that require some sort of input it can be tough to develop the proper payload and event for a test.
  • For the uninitiated, deploying functions with Infrastructure as Code tools can be a challenging undertaking.
  • Logging the output of a function feels disjointed from running the function in the console. A tighter integration with operational logging would be appreciated, perhaps being able to view function logs from the Lambda console instead of having to navigate over to CloudWatch.
  • Sometimes its difficult to determine the correct permissions needed for Lambda execution from other AWS services.
Read full review
Usability
Apache
For its capability to connect with multicloud environments. Access Control management is something that we don't get in all the schedulers and orchestrators. But although it provides so many flexibility and options to due to python , some level of knowledge of python is needed to be able to build workflows.
Read full review
Amazon AWS
I give it a seven is usability because it's AWS. Their UI's are always clunkier than the competition and their documentation is rather cumbersome. There's SO MUCH to dig through and it's a gamble if you actually end up finding the corresponding info if it will actually help. Like I said before, going to google with a specific problem is likely a better route because AWS is quite ubiquitous and chances are you're not the first to encounter the problem. That being said, using SAM (Serverless application model) and it's SAM Local environment makes running local instances of your Lambdas in dev environments painless and quite fun. Using Nodejs + Lambda + SAM Local + VS Code debugger = AWESOME.
Read full review
Support Rating
Apache
No answers on this topic
Amazon AWS
Amazon consistently provides comprehensive and easy-to-parse documentation of all AWS features and services. Most development team members find what they need with a quick internet search of the AWS documentation available online. If you need advanced support, though, you might need to engage an AWS engineer, and that could be an unexpected (or unwelcome) expense.
Read full review
Alternatives Considered
Apache
Multiple DAGs can be orchestrated simultaneously at varying times, and runs can be reproduced or replicated with relative ease. Overall, utilizing Apache Airflow is easier to use than other solutions now on the market. It is simple to integrate in Apache Airflow, and the workflow can be monitored and scheduling can be done quickly using Apache Airflow. We advocate using this tool for automating the data pipeline or process.
Read full review
Amazon AWS
AWS Lambda is good for short running functions, and ideally in response to events within AWS. Google App Engine is a more robust environment which can have complex code running for long periods of time, and across more than one instance of hardware. Google App Engine allows for both front-end and back-end infrastructure, while AWS Lambda is only for small back-end functions
Read full review
Return on Investment
Apache
  • Impact Depends on number of workflows. If there are lot of workflows then it has a better usecase as the implementation is justified as it needs resources , dedicated VMs, Database that has a cost
  • Donot use it if you have very less usecases
Read full review
Amazon AWS
  • Positive - Only paying for when code is run, unlike virtual machines where you pay always regardless of processing power usage.
  • Positive - Scalability and accommodating larger amounts of demand is much cheaper. Instead of scaling up virtual machines and increasing the prices you pay for that, you are just increasing the number of times your lambda function is run.
  • Negative - Debugging/troubleshooting, and developing for lambda functions take a bit more time to get used to, and migrating code from virtual machines and normal processes to Lambda functions can take a bit of time.
Read full review
ScreenShots