Apache Airflow vs. SAP Data Intelligence

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Airflow
Score 8.6 out of 10
N/A
Apache Airflow is an open source tool that can be used to programmatically author, schedule and monitor data pipelines using Python and SQL. Created at Airbnb as an open-source project in 2014, Airflow was brought into the Apache Software Foundation’s Incubator Program 2016 and announced as Top-Level Apache Project in 2019. It is used as a data orchestration solution, with over 140 integrations and community support.N/A
SAP Data Intelligence
Score 8.3 out of 10
N/A
SAP Data Intelligence is presented by the vendor as a single solution to innovate with data. It provides data-driven innovation in the cloud, on premise, and through BYOL deployments. It is described by the vendor as the new evolution of the company's data orchestration and management solution running on Kubernetes, released by SAP in 2017 to deal with big data and complex data orchestration working across distributed landscapes and processing engine.N/A
Pricing
Apache AirflowSAP Data Intelligence
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache AirflowSAP Data Intelligence
Free Trial
NoYes
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoYes
Entry-level Setup FeeNo setup feeOptional
Additional Details
More Pricing Information
Community Pulse
Apache AirflowSAP Data Intelligence
Features
Apache AirflowSAP Data Intelligence
Workload Automation
Comparison of Workload Automation features of Product A and Product B
Apache Airflow
9.8
10 Ratings
15% above category average
SAP Data Intelligence
-
Ratings
Multi-platform scheduling10.010 Ratings00 Ratings
Central monitoring10.010 Ratings00 Ratings
Logging9.910 Ratings00 Ratings
Alerts and notifications9.910 Ratings00 Ratings
Analysis and visualization9.910 Ratings00 Ratings
Application integration9.010 Ratings00 Ratings
Best Alternatives
Apache AirflowSAP Data Intelligence
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
ActiveBatch Workload Automation
ActiveBatch Workload Automation
Score 7.9 out of 10

No answers on this topic

Enterprises
Control-M
Control-M
Score 9.3 out of 10
Talend Data Fabric
Talend Data Fabric
Score 9.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache AirflowSAP Data Intelligence
Likelihood to Recommend
9.0
(10 ratings)
7.6
(55 ratings)
Likelihood to Renew
-
(0 ratings)
8.2
(2 ratings)
Usability
10.0
(1 ratings)
7.9
(50 ratings)
Support Rating
-
(0 ratings)
6.6
(47 ratings)
Configurability
-
(0 ratings)
8.2
(1 ratings)
Vendor post-sale
-
(0 ratings)
9.1
(1 ratings)
Vendor pre-sale
-
(0 ratings)
9.1
(1 ratings)
User Testimonials
Apache AirflowSAP Data Intelligence
Likelihood to Recommend
Apache
For a quick job scanning of status and deep-diving into job issues, details, and flows, AirFlow does a good job. No fuss, no muss. The low learning curve as the UI is very straightforward, and navigating it will be familiar after spending some time using it. Our requirements are pretty simple. Job scheduler, workflows, and monitoring. The jobs we run are >100, but still is a lot to review and troubleshoot when jobs don't run. So when managing large jobs, AirFlow dated UI can be a bit of a drawback.
Read full review
SAP
If you have an SAP products ecosystem in your IT landscape, it becomes a no-brainer to go ahead with an SAP Data Intelligence product for your data orchestration, data management, and advanced data analytics needs, such as data preparation for your AI/ML processes. It provides a seamless integration with other SAP products.
Read full review
Pros
Apache
  • In charge of the ETL processes.
  • As there is no incoming or outgoing data, we may handle the scheduling of tasks as code and avoid the requirement for monitoring.
Read full review
SAP
  • It integrates well with our current ecosystem of SAP products, like HANA.
  • It provides end-to-end machine learning operations, with tools for the complete model life cycle.
  • It has a simple user interface for novice users, with complex tools also available for power users.
  • It builds on SAP Data Hub, providing all the ETL functions of that tool with additional machine learning functionality.
  • It can run in the cloud, no on-premise software management needed.
  • Many programming languages are supported, it provides a sandbox environment for the user to develop in whichever style they prefer.
  • SAP is very actively developing and improving it.
Read full review
Cons
Apache
  • they should bring in some time based scheduling too not only event based
  • they do not store the metadata due to which we are not able to analyze the workflows
  • they only support python as of now for scripted pipeline writing
Read full review
SAP
  • Data transfer speed tends to be slow when there is poor internet connection since SAP Data Intelligence don’t synchronize data while offline. However, this is not vendor fault, that’s why we have implemented robust wireless technology internet connection in our organization.
Read full review
Likelihood to Renew
Apache
No answers on this topic
SAP
Allow collaborations among various personas
with insights as ratings and comments on the
datasets Reuse knowledges on the datasets for new users Next-Gen Data Management and Artificial Intelligence
Read full review
Usability
Apache
Easy to learn Easy to use Robust workflow orchestration framework Good in dependent job management
Read full review
SAP
I think the troubleshooting process might be streamlined with improved error recording and tracing. A lot of information about issues and how to fix them is hidden away in the Kubernetes pods themselves. I'm not sure whether SAP Data Intelligence can fix this problem it may be connected to Kubernetes's design, in which case fixing it could need modifications inside Kubernetes itself.
Read full review
Support Rating
Apache
No answers on this topic
SAP
Initially we struggle to get help from SAP but then dedicated Dev angel was assigned to us and that simplify the overall support scenario. There is still room of improvement in documentation around SAP Data intelligence. We struggle a lot to initially understand the feature and required help around performance improvement area,
Read full review
Alternatives Considered
Apache
There are a number of reasons to choose Apache Airflow over other similar platforms- Integrations—ready-to-use operators allow you to integrate Airflow with cloud platforms (Google, AWS, Azure, etc) Apache Airflow helps with backups and other DevOps tasks, such as submitting a Spark job and storing the resulting data on a Hadoop cluster It has machine learning model training, such as triggering a Sage maker job.
Read full review
SAP
One of the reasons to pick SAP Data Intelligence is the speed and security it provides, in addition to the excellent support it provides. It is also compatible with all popular databases, which is another reason to choose it.
Read full review
Return on Investment
Apache
  • A lot of helpful features out-of-the-box, such as the DAG visualizations and task trees
  • Allowed us to implement complex data pipelines easily and at a relatively low cost
Read full review
SAP
  • Automation of data management slashed tasks by over 60% in most departments for the first 8 months.
  • Metadata catalogs have enabled us to categorize data from disjointed sources in one place.
  • It runs multiple ML models which enhances flexibility when managing data.
Read full review
ScreenShots

SAP Data Intelligence Screenshots

Screenshot of Business GlossaryScreenshot of Example of data quality operatorsScreenshot of Data profiling fact sheetScreenshot of SAP Data Intelligence Jupyter lab notebook for machine learningScreenshot of SAP Data Intelligence data pipeline using PythonScreenshot of SAP Data Intelligence example ata quality dashboard