The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
Against HBase, writes were faster. Reads not so much. Also ability to store in other formats would be good (such as objects). Compared to aerospike, does not compare. Aerospike blows it out of water.
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for …
Technology selection should be done based on the need and not based on buzz words in the market (google searching). If your data need flat file approach and more searchable based on index and partition keys, then it's better to go for Cassandra. Cassandra is a better choice …
Apache Cassandra has the best of both worlds, it is a Java based NoSQL, linearly scalable, best in class
tunable performance across different workloads, fault tolerant, distributed, masterless, time series database. We have used both Apache HBase and MongoDB for some use cases …
Four years ago, I needed to choose a web-scale database. Having used relational databases for years (PostgreSQL is my favorite), I needed something that could perform well at scale with no downtime. I considered VoltDB for its in-memory speed, but it's limited in scale. I …
HBase is more secure. Easily scalable. HBase is for wide-column store while MongoDB is for document store. Triggers available in HBase while in Mongodb triggers are not available.
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work …
Typically, Cassandra is faster on reads and HBase is faster on writes. You use Cassandra when you want to use a website, HBase is just an overall good general use database engine. Cassandra has its own storage engine and HBase uses HDFS and all its benefits. MongoDB is …
These days I use Apache Cassandra more for even more scalability, good performance under different kind of workloads, and for providing highly available systems. Apache Cassandra also has connectors for Hadoop, Spark, and Solr.
Apache Cassandra is a NoSQL database and well suited where you need highly available, linearly scalable, tunable consistency and high performance across varying workloads. It has worked well for our use cases, and I shared my experiences to use it effectively at the last Cassandra summit! http://bit.ly/1Ok56TK It is a NoSQL database, finally you can tune it to be strongly consistent and successfully use it as such. However those are not usual patterns, as you negotiate on latency. It works well if you require that. If your use case needs strongly consistent environments with semantics of a relational database or if the use case needs a data warehouse, or if you need NoSQL with ACID transactions, Apache Cassandra may not be the optimum choice.
Hbase is well suited for large organizations with millions of operations performing on tables, real-time lookup of records in a table, range queries, random reads and writes and online analytics operations. Hbase cannot be replaced for traditional databases as it cannot support all the features, CPU and memory intensive. Observed increased latency when using with MapReduce job joins.
Continuous availability: as a fully distributed database (no master nodes), we can update nodes with rolling restarts and accommodate minor outages without impacting our customer services.
Linear scalability: for every unit of compute that you add, you get an equivalent unit of capacity. The same application can scale from a single developer's laptop to a web-scale service with billions of rows in a table.
Amazing performance: if you design your data model correctly, bearing in mind the queries you need to answer, you can get answers in milliseconds.
Time-series data: Cassandra excels at recording, processing, and retrieving time-series data. It's a simple matter to version everything and simply record what happens, rather than going back and editing things. Then, you can compute things from the recorded history.
Cassandra runs on the JVM and therefor may require a lot of GC tuning for read/write intensive applications.
Requires manual periodic maintenance - for example it is recommended to run a cleanup on a regular basis.
There are a lot of knobs and buttons to configure the system. For many cases the default configuration will be sufficient, but if its not - you will need significant ramp up on the inner workings of Cassandra in order to effectively tune it.
Stored procedures functionality is not available so it should be implemented.
HBase is CPU and Memory intensive with large sequential input or output access while as Map Reduce jobs are primarily input or output bound with fixed memory. HBase integrated with Map-reduce jobs will result in random latencies.
I would recommend Cassandra DB to those who know their use case very well, as well as know how they are going to store and retrieve data. If you need a guarantee in data storage and retrieval, and a DB that can be linearly grown by adding nodes across availability zones and regions, then this is the database you should choose.
There's really not anything else out there that I've seen comparable for my use cases. HBase has never proven me wrong. Some companies align their whole business on HBase and are moving all of their infrastructure from other database engines to HBase. It's also open source and has a very collaborative community.
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for web and mobile applications due to its performance concern. Cassandra, by contrast, offers the availability and performance necessary for developing highly available applications. Furthermore, the Hadoop technology stack is typically deployed in a single location, while in the big international enterprise context, we demand the feasibility for deployment across countries and continents, hence finally we are favor of Cassandra
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work to an extent. HA between the two are almost the same.
I have no experience with this but from the blogs and news what I believe is that in businesses where there is high demand for scalability, Cassandra is a good choice to go for.
Since it works on CQL, it is quite familiar with SQL in understanding therefore it does not prevent a new employee to start in learning and having the Cassandra experience at an industrial level.
As Hbase is a noSql database, here we don't have transaction support and we cannot do many operations on the data.
Not having the feature of primary or a composite primary key is an issue as the architecture to be defined cannot be the same legacy type. Also the transaction concept is not applicable here.
The way data is printed on console is not so user-friendly. So we had to use some abstraction over HBase (eg apache phoenix) which means there is one new component to handle.