Likelihood to Recommend Apache Cassandra is a NoSQL database and well suited where you need highly available, linearly scalable, tunable consistency and high performance across varying workloads. It has worked well for our use cases, and I shared my experiences to use it effectively at the last Cassandra summit!
http://bit.ly/1Ok56TK It is a NoSQL database, finally you can tune it to be strongly consistent and successfully use it as such. However those are not usual patterns, as you negotiate on latency. It works well if you require that. If your use case needs strongly consistent environments with semantics of a relational database or if the use case needs a data warehouse, or if you need NoSQL with ACID transactions, Apache Cassandra may not be the optimum choice.
Read full review Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
Read full review Pros Continuous availability: as a fully distributed database (no master nodes), we can update nodes with rolling restarts and accommodate minor outages without impacting our customer services. Linear scalability: for every unit of compute that you add, you get an equivalent unit of capacity. The same application can scale from a single developer's laptop to a web-scale service with billions of rows in a table. Amazing performance: if you design your data model correctly, bearing in mind the queries you need to answer, you can get answers in milliseconds. Time-series data: Cassandra excels at recording, processing, and retrieving time-series data. It's a simple matter to version everything and simply record what happens, rather than going back and editing things. Then, you can compute things from the recorded history. Read full review As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand! Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast! Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster. Read full review Cons Cassandra runs on the JVM and therefor may require a lot of GC tuning for read/write intensive applications. Requires manual periodic maintenance - for example it is recommended to run a cleanup on a regular basis. There are a lot of knobs and buttons to configure the system. For many cases the default configuration will be sufficient, but if its not - you will need significant ramp up on the inner workings of Cassandra in order to effectively tune it. Read full review Joining data requires duplicate de-normalized documents that make parent child relationships. It is hard and requires a lot of synchronizations Tracking errors in the data in the logs can be hard, and sometimes recurring errors blow up the error logs Schema changes require complete reindexing of an index Read full review Likelihood to Renew I would recommend Cassandra DB to those who know their use case very well, as well as know how they are going to store and retrieve data. If you need a guarantee in data storage and retrieval, and a DB that can be linearly grown by adding nodes across availability zones and regions, then this is the database you should choose.
Read full review We're pretty heavily invested in ElasticSearch at this point, and there aren't any obvious negatives that would make us reconsider this decision.
Read full review Usability It’s great tool but it can be complicated when it comes administration and maintenance.
Read full review To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
Read full review Support Rating Sometimes instead giving straight answer, we ‘re getting transfered to talk professional service.
Read full review We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
Read full review Implementation Rating Do not mix data and master roles. Dedicate at least 3 nodes just for Master
Read full review Alternatives Considered We evaluated
MongoDB also, but don't like the single point failure possibility. The
HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also
HBase is designed for "cold"/old historical data lake use cases and is not typically used for web and mobile applications due to its performance concern. Cassandra, by contrast, offers the availability and performance necessary for developing highly available applications. Furthermore, the Hadoop technology stack is typically deployed in a single location, while in the big international enterprise context, we demand the feasibility for deployment across countries and continents, hence finally we are favor of Cassandra
Read full review As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
Read full review Return on Investment I have no experience with this but from the blogs and news what I believe is that in businesses where there is high demand for scalability, Cassandra is a good choice to go for. Since it works on CQL, it is quite familiar with SQL in understanding therefore it does not prevent a new employee to start in learning and having the Cassandra experience at an industrial level. Read full review We have had great luck with implementing Elasticsearch for our search and analytics use cases. While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled. We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems. Read full review ScreenShots