Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. And FlinkCEP is the Complex Event Processing (CEP) library implemented on top of Flink. Users can detect event patterns in streams of events.
N/A
Databricks Data Intelligence Platform
Score 8.6 out of 10
N/A
Databricks offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service provides a platform for data pipelines, data lakes, and data platforms.
$0.07
Per DBU
Pricing
Apache Flink
Databricks Data Intelligence Platform
Editions & Modules
No answers on this topic
Standard
$0.07
Per DBU
Premium
$0.10
Per DBU
Enterprise
$0.13
Per DBU
Offerings
Pricing Offerings
Apache Flink
Databricks Data Intelligence Platform
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Flink
Databricks Data Intelligence Platform
Features
Apache Flink
Databricks Data Intelligence Platform
Streaming Analytics
Comparison of Streaming Analytics features of Product A and Product B
In well-suited scenarios, I would recommend using Apache Flink when you need to perform real-time analytics on streaming data, such as monitoring user activities, analyzing IoT device data, or processing financial transactions in real-time. It is also a good choice in scenarios where fault tolerance and consistency are crucial. I would not recommend it for simple batch processing pipelines or for teams that aren't experienced, as it might be overkill, and the steep learning curve may not justify the investment.
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
Python/SQL API, since both are relatively new, still misses a few features in comparison with the Java/Scala option
Steep Learning Curve, it's documentation could be improved to something more user-friendly, and it could also discuss more theoretical concepts than just coding
Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
Visualization in MLFLOW experiment can be enhanced
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.
in terms of graph generation and interaction it could improve their UI and UX
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
Apache Spark is more user-friendly and features higher-level APIs. However, it was initially built for batch processing and only more recently gained streaming capabilities. In contrast, Apache Flink processes streaming data natively. Therefore, in terms of low latency and fault tolerance, Apache Flink takes the lead. However, Spark has a larger community and a decidedly lower learning curve.
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.