Apache Flink vs. Databricks Data Intelligence Platform

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Flink
Score 9.0 out of 10
N/A
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale. And FlinkCEP is the Complex Event Processing (CEP) library implemented on top of Flink. Users can detect event patterns in streams of events.N/A
Databricks Data Intelligence Platform
Score 8.6 out of 10
N/A
Databricks offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service provides a platform for data pipelines, data lakes, and data platforms.
$0.07
Per DBU
Pricing
Apache FlinkDatabricks Data Intelligence Platform
Editions & Modules
No answers on this topic
Standard
$0.07
Per DBU
Premium
$0.10
Per DBU
Enterprise
$0.13
Per DBU
Offerings
Pricing Offerings
Apache FlinkDatabricks Data Intelligence Platform
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache FlinkDatabricks Data Intelligence Platform
Features
Apache FlinkDatabricks Data Intelligence Platform
Streaming Analytics
Comparison of Streaming Analytics features of Product A and Product B
Apache Flink
8.7
1 Ratings
9% above category average
Databricks Data Intelligence Platform
-
Ratings
Real-Time Data Analysis10.01 Ratings00 Ratings
Data Ingestion from Multiple Data Sources7.01 Ratings00 Ratings
Low Latency10.01 Ratings00 Ratings
Data wrangling and preparation6.01 Ratings00 Ratings
Linear Scale-Out9.01 Ratings00 Ratings
Data Enrichment10.01 Ratings00 Ratings
Best Alternatives
Apache FlinkDatabricks Data Intelligence Platform
Small Businesses
IBM Streams (discontinued)
IBM Streams (discontinued)
Score 9.0 out of 10

No answers on this topic

Medium-sized Companies
Confluent
Confluent
Score 9.2 out of 10
Snowflake
Snowflake
Score 8.7 out of 10
Enterprises
Spotfire Streaming
Spotfire Streaming
Score 5.2 out of 10
Snowflake
Snowflake
Score 8.7 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache FlinkDatabricks Data Intelligence Platform
Likelihood to Recommend
9.0
(1 ratings)
10.0
(18 ratings)
Usability
-
(0 ratings)
10.0
(4 ratings)
Support Rating
-
(0 ratings)
8.7
(2 ratings)
Contract Terms and Pricing Model
-
(0 ratings)
8.0
(1 ratings)
Professional Services
-
(0 ratings)
10.0
(1 ratings)
User Testimonials
Apache FlinkDatabricks Data Intelligence Platform
Likelihood to Recommend
Apache
In well-suited scenarios, I would recommend using Apache Flink when you need to perform real-time analytics on streaming data, such as monitoring user activities, analyzing IoT device data, or processing financial transactions in real-time. It is also a good choice in scenarios where fault tolerance and consistency are crucial. I would not recommend it for simple batch processing pipelines or for teams that aren't experienced, as it might be overkill, and the steep learning curve may not justify the investment.
Read full review
Databricks
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
Read full review
Pros
Apache
  • Low latency Stream Processing, enabling real-time analytics
  • Scalability, due its great parallel capabilities
  • Stateful Processing, providing several built-in fault tolerance systems
  • Flexibility, supporting both batch and stream processing
Read full review
Databricks
  • Process raw data in One Lake (S3) env to relational tables and views
  • Share notebooks with our business analysts so that they can use the queries and generate value out of the data
  • Try out PySpark and Spark SQL queries on raw data before using them in our Spark jobs
  • Modern day ETL operations made easy using Databricks. Provide access mechanism for different set of customers
Read full review
Cons
Apache
  • Python/SQL API, since both are relatively new, still misses a few features in comparison with the Java/Scala option
  • Steep Learning Curve, it's documentation could be improved to something more user-friendly, and it could also discuss more theoretical concepts than just coding
  • Community smaller than other frameworks
Read full review
Databricks
  • Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
  • Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
  • Visualization in MLFLOW experiment can be enhanced
Read full review
Usability
Apache
No answers on this topic
Databricks
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.

in terms of graph generation and interaction it could improve their UI and UX
Read full review
Support Rating
Apache
No answers on this topic
Databricks
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
Read full review
Alternatives Considered
Apache
Apache Spark is more user-friendly and features higher-level APIs. However, it was initially built for batch processing and only more recently gained streaming capabilities. In contrast, Apache Flink processes streaming data natively. Therefore, in terms of low latency and fault tolerance, Apache Flink takes the lead. However, Spark has a larger community and a decidedly lower learning curve.
Read full review
Databricks
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.
Read full review
Return on Investment
Apache
  • Allowed for real-time data recovery, adding significant value to the busines
  • Enabled us to create new internal tools that we couldn't find in the market, becoming a strategic asset for the business
  • Enhanced the overall technical capability of the team
Read full review
Databricks
  • The ability to spin up a BIG Data platform with little infrastructure overhead allows us to focus on business value not admin
  • DB has the ability to terminate/time out instances which helps manage cost.
  • The ability to quickly access typical hard to build data scenarios easily is a strength.
Read full review
ScreenShots