Likelihood to Recommend Apache Flume is well suited when the use case is log data ingestion and aggregate only, for example for compliance of configuration management. It is not well suited where you need a general-purpose real-time data ingestion pipeline that can receive log data and other forms of data streams (eg IoT, messages).
Read full review Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review Pros Multiple sources of data (sources) and destinations (sinks) that allows you to move data form and to any relevant data storage It is very easy to setup and run Very open to personalization, you can create filters, enrichment, new sources and destinations Read full review Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues Faster in execution times compare to Hadoop and PIG Latin Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner Interoperability between SQL and Scala / Python style of munging data Read full review Cons It is very specific for log data ingestion so it is pretty hard to use for anything else besides log data Data replication is not built in and needs to be added on top of Apache Flume (not a hard job to do though) Read full review Memory management. Very weak on that. PySpark not as robust as scala with spark. spark master HA is needed. Not as HA as it should be. Locality should not be a necessity, but does help improvement. But would prefer no locality Read full review Likelihood to Renew Capacity of computing data in cluster and fast speed.
Steven Li Senior Software Developer (Consultant)
Read full review Usability The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review Support Rating Apache Flume is open-source so support is limited. Never the less, it has great documentation and best practices documents from their end-users so it is not hard to use, setup and configure.
Read full review 1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review Alternatives Considered Apache Flume is a very good solution when your project is not very complex at transformation and enrichment, and good if you have an external management suite like Cloudera, Hortonworks, etc. But it is not a real EAI or ETL like AB Initio or Attunity so you need to know exactly what you want. On the other hand being an opensource project give Apache a lot of room to personalize thanks to its plug-able architecture and has a very nice performance having a very low CPU and Memory footprint, a single server can do the job on many occasions, as opposed to the multi-server architecture of paid products.
Read full review Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the
Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review Return on Investment Flume has simplified a lot many of our ingest procedures, easier to deploy and integrate than a classical EAI, reducing the time to market But opposed to EAIs if the project starts to grow in complexity Apache Flume project may not be as suitable Read full review Business leaders are able to take data driven decisions Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available Business is able come up with new product ideas Read full review ScreenShots