The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
N/A
H2 Database
Score 8.0 out of 10
N/A
H2 Database Engine is an open source, embeddable database management system (RDMS) written in Java.
N/A
Pricing
Apache HBase
H2 Database Engine
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
HBase
H2 Database
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache HBase
H2 Database Engine
Features
Apache HBase
H2 Database Engine
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Hbase is well suited for large organizations with millions of operations performing on tables, real-time lookup of records in a table, range queries, random reads and writes and online analytics operations. Hbase cannot be replaced for traditional databases as it cannot support all the features, CPU and memory intensive. Observed increased latency when using with MapReduce job joins.
For running application tests it's well suited. H2 [Database Engine] can replace the real-world database solution for them easily and removes the requirement to set up a a separate database instance just for running unit tests. For using in actual production application one needs to consider scale. H2 is suitable if application runs in single instance and database is located in same machine as a file where that application runs. This means the application shouldn't have a large user base. However it's easy to switch to an actual MySQL instance if the need arises, it's most likely only a configuration change and doesn't require new code.
Stored procedures functionality is not available so it should be implemented.
HBase is CPU and Memory intensive with large sequential input or output access while as Map Reduce jobs are primarily input or output bound with fixed memory. HBase integrated with Map-reduce jobs will result in random latencies.
There's really not anything else out there that I've seen comparable for my use cases. HBase has never proven me wrong. Some companies align their whole business on HBase and are moving all of their infrastructure from other database engines to HBase. It's also open source and has a very collaborative community.
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work to an extent. HA between the two are almost the same.
While both can run as an in-memory database, H2 Database Engine was just so much easier for us to use since we primarily use the Java stack and H2 Database Engine is also built with Java.
As Hbase is a noSql database, here we don't have transaction support and we cannot do many operations on the data.
Not having the feature of primary or a composite primary key is an issue as the architecture to be defined cannot be the same legacy type. Also the transaction concept is not applicable here.
The way data is printed on console is not so user-friendly. So we had to use some abstraction over HBase (eg apache phoenix) which means there is one new component to handle.