Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Hive
Score 8.0 out of 10
N/A
Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.N/A
ArangoDB
Score 8.0 out of 10
N/A
ArangoDB is a distributed free and open-source database with a flexible data model for graphs, documents, and key-values. Its supporters state that developers can build high performance applications on top of ArangoDB using a convenient SQL-like query language or JavaScript extensions.N/A
Presto
Score 10.0 out of 10
N/A
Presto is an open source SQL query engine designed to run queries on data stored in Hadoop or in traditional databases. Teradata supported development of Presto followed the acquisition of Hadapt and Revelytix.N/A
Pricing
Apache HiveArangoDBPresto
Editions & Modules
No answers on this topic
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache HiveArangoDBPresto
Free Trial
NoNoNo
Free/Freemium Version
NoNoNo
Premium Consulting/Integration Services
NoNoNo
Entry-level Setup FeeNo setup feeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache HiveArangoDBPresto
Considered Multiple Products
Apache Hive
Chose Apache Hive
Presto is slightly less reliable but much faster for interactive querying. These tools would not be replacements for each other, but rather complements.
Chose Apache Hive
We selected Hive because it supports SQL, schema and provides structure on top of hadoop. Having data structured has its benefits, especially if there are thousands of users processing on the same data over and over again. Pig provides the ability to process unstructured data. …
Chose Apache Hive
One of the major advantages of using Presto or the main reason why people use Presto (Teradata) is due to that fact it can support multiple data sources - which is lacking as in the case of Apache Hive. But still, most people who come from a Structured data-based background …
Chose Apache Hive
Community support and ease of use -not deployment.

It enables querying and analyzing large amounts of data stored in HDFS, on the petabyte scale. It has a query language called HQL that transforms SQL queries into MapReduce jobs that run on Hadoop, and it is wonderful for the …
Chose Apache Hive
Due to effective queries resolved time and the performance and user-friendly framework compared to other products.
Chose Apache Hive
Hive was one of the first SQL on Hadoop technologies, and it comes bundled with the main Hadoop distributions of HDP and CDH. Since its release, it has gained good improvements, but selecting the right SQL on Hadoop technology requires a good understanding of the strengths and …
ArangoDB

No answer on this topic

Presto
Chose Presto
I think Presto is one of the best solutions out there today at the cutting edge for interactive query analysis. One of the challenges is presto is a niche tool for the interactive query use case and doesn't have the knobs and whistles as much as Spark. In the foreseeable future …
Best Alternatives
Apache HiveArangoDBPresto
Small Businesses
Google BigQuery
Google BigQuery
Score 8.7 out of 10
InfluxDB
InfluxDB
Score 8.8 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Cloudera Enterprise Data Hub
Cloudera Enterprise Data Hub
Score 9.0 out of 10
SQLite
SQLite
Score 8.0 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Enterprises
Oracle Exadata
Oracle Exadata
Score 9.9 out of 10
SQLite
SQLite
Score 8.0 out of 10
SAP IQ
SAP IQ
Score 10.0 out of 10
All AlternativesView all alternativesView all alternativesView all alternatives
User Ratings
Apache HiveArangoDBPresto
Likelihood to Recommend
8.0
(35 ratings)
8.0
(1 ratings)
7.8
(2 ratings)
Likelihood to Renew
10.0
(1 ratings)
-
(0 ratings)
-
(0 ratings)
Usability
8.5
(7 ratings)
-
(0 ratings)
-
(0 ratings)
Support Rating
7.0
(6 ratings)
-
(0 ratings)
-
(0 ratings)
User Testimonials
Apache HiveArangoDBPresto
Likelihood to Recommend
Apache
Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review
ArangoDB
Use cases provided by default are good and can be improve better using Machine Learning and AI. AQL query language is very simple and efficient in use if anyone using SQL can quickly learn AQL Language.
Developers can easily map the database and can access various patterns like search, ranking.
JSON and semantic search is the latest and next-generation technology to implement to access and extract large datasets.
Read full review
Open Source
Presto is for interactive simple queries, where Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like Vertica
Read full review
Pros
Apache
  • Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax.
  • Relatively easy to set up and start using.
  • Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved.
Read full review
ArangoDB
  • AQL query language is big plus for ArangoDB
  • It can be implemented cloud as well as on-prem
  • Search Engine is a very good option for ArangoDB
Read full review
Open Source
  • Linking, embedding links and adding images is easy enough.
  • Once you have become familiar with the interface, Presto becomes very quick & easy to use (but, you have to practice & repeat to know what you are doing - it is not as intuitive as one would hope).
  • Organizing & design is fairly simple with click & drag parameters.
Read full review
Cons
Apache
  • Some queries, particularly complex joins, are still quite slow and can take hours
  • Previous jobs and queries are not stored sometimes
  • Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond).
  • Sometimes, directories and tables don't load properly which causes confusion
Read full review
ArangoDB
  • By providing the free services for few months will be help understand for beginners
  • Enhancing features in dashboard and can make UI more user-friendly
  • Should conduct more surveys and adv to improve scalability
Read full review
Open Source
  • Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem.
  • Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override.
  • UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc.
Read full review
Likelihood to Renew
Apache
Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review
ArangoDB
No answers on this topic
Open Source
No answers on this topic
Usability
Apache
Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review
ArangoDB
No answers on this topic
Open Source
No answers on this topic
Support Rating
Apache
Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review
ArangoDB
No answers on this topic
Open Source
No answers on this topic
Alternatives Considered
Apache
Besides Hive, I have used Google BigQuery, which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review
ArangoDB
It uses AQL query Language, which is different from other Databases. It has flexibility to integrate in cloud, on-prem anywhere
Read full review
Open Source
Presto is good for a templated design appeal. You cannot be too creative via this interface - but, the layout and options make the finalized visual product appealing to customers. The other design products I use are for different purposes and not really comparable to Presto.
Read full review
Return on Investment
Apache
  • Apache hive is secured and scalable solution that helps in increasing the overall organization productivity.
  • Apache hive can handle and process large amount of data in a sufficient time manner.
  • It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs.
Read full review
ArangoDB
  • It is very powerful tool and should adv more to improve sales
  • Should conduct more free trails and trainings
  • Open source and runs everywhere
Read full review
Open Source
  • Presto has helped scale Uber's interactive data needs. We have migrated a lot out of proprietary tech like Vertica.
  • Presto has helped build data driven applications on its stack than maintain a separate online/offline stack.
  • Presto has helped us build data exploration tools by leveraging it's power of interactive and is immensely valuable for data scientists.
Read full review
ScreenShots