Likelihood to Recommend Software work execution is on a large scale, it is good to use for new projects or organizational changes, data lineage mapping has always been dubious but this one has had good results. You can store and synchronize data from different departments, the storage process can be manual but it is best automated.
Read full review Hive is a powerful tool for data analysis and management that is well-suited for a wide range of scenarios. Here are some specific examples of scenarios where Hive might be particularly well-suited: Data warehousing: Hive is often used as a data warehousing platform, allowing users to store and analyze large amounts of structured and semi-structured data. It is especially good at handling data that is too large to be stored and analyzed on a single machine, and supports a wide variety of data formats. Batch processing: Hive is designed for batch processing of large datasets, making it well-suited for tasks such as data ETL (extract, transform, load), data cleansing, and data aggregation.Simple queries on large datasets: Hive is optimized for simple queries on large datasets, making it a good choice for tasks such as data exploration and summary statistics. Data transformation: Hive allows users to perform data transformations and manipulations using custom scripts written in Java, Python, or other programming languages. This can be useful for tasks such as data cleansing, data aggregation, and data transformation. On the other hand, here are some specific examples of scenarios where Hive might be less appropriate: Real-time queries: Hive is a batch-oriented system, which means that it is designed to process large amounts of data in a batch mode rather than in real-time. While it is possible to use Hive for real-time queries, it may not be the most efficient choice for this type of workload. Complex queries: Hive is optimized for simple queries on large datasets, but may struggle with more complex queries or queries that require multiple joins or subqueries.Very large datasets: While Hive is designed to scale horizontally and can handle large amounts of data, it may not scale as well as some other tools for very large datasets or complex workloads.
Read full review Pros Apache Hive allows use to write expressive solutions to complex problems thanks to its SQL-like syntax. Relatively easy to set up and start using. Very little ramp-up to start using the actual product, documentation is very thorough, there is an active community, and the code base is constantly being improved. Read full review Simplicity, it offers a clean environment without risking the outcome. An example of this are the timesheets that allow a fast way to keep track of progress Interaction, the different options make it faster and easier to interact and collaborate in the development of a product. An example of this would be Hive Notes for meetings The different visualisations it offers allow to explore the best ways to affront your projects. I really like the Gantt mappings view to understand who can be contacted at each point Read full review Cons Some queries, particularly complex joins, are still quite slow and can take hours Previous jobs and queries are not stored sometimes Switching to Impala can sometimes be time-consuming (i.e. the system hangs, or is slow to respond). Sometimes, directories and tables don't load properly which causes confusion Read full review Organizing tasks by assignees could be better. It's a little cumbersome to check off each person you want. Can you group these? I don't really use any view besides task view. Is there something better I could be using? It would be nice if attachments showed up in a nicer format, maybe with a preview? Read full review Likelihood to Renew Since I do not know the second data warehouse solution that integrate with HDFS as well as Hive.
Read full review Usability Hive is a very good big data analysis and ad-hoc query platform, which supports scaling also. The BI processes can be easily integrated with Hadoop via the Hive. It can deal with a much larger data set that traditional RDBMS can not. It is a "must-have" component of the big data domain.
Read full review Support Rating Apache Hive is a FOSS project and its open source. We need not definitely comment on anything about the support of open source and its developer community. But, it has got tremendous developer support, awesome documentation. I would justify the fact that much support can be gathered from the community backup.
Read full review Our CSR is easily accessible and they have support built into the app itself. They also have a pretty robust support site. We also took advantage of the free trial and learned so much by putting Hive through the paces and figuring out the best way to mold it to our needs.
Read full review Alternatives Considered Besides Hive, I have used
Google BigQuery , which is costly but have very high computation speed. Amazon Redshift is the another product, I used in my recent organisation. Both Redshift and BigQuery are managed solution whereas Hive needs to be managed
Read full review Hive is a bit different than
Jira and Monday, which I used mostly. Overall does a great job managing project and helps with team communication. Removes dependency of asking team members for updates by going to conference rooms. With Hive, the team updates the status, and we can easily track it.
Read full review Return on Investment Apache hive is secured and scalable solution that helps in increasing the overall organization productivity. Apache hive can handle and process large amount of data in a sufficient time manner. It simplifies writing SQL queries, hence helping the organization as most companies use SQL for all query jobs. Read full review Workflow Management will help you better move your projects along which saves time and money. Time tracking will allow you to better manage the hours and keep your contractors accountable. Overall visibility of projects allow you to keep your margins down and combat "bleeding" and hidden costs or surprises. Read full review ScreenShots