HDInsight is an implementation of the Apache Hadoop technology stack on the Microsoft Azure cloud platform: It is based on the Hortonworks Hadoop distribution. Microsoft Azure HDInsight includes implementations of Apache Spark, HBase, Storm, Pig, Hive, Sqoop, Oozie, Ambari, etc. It also integrates with with business intelligence (BI) tools such as Power BI, Excel, SQL Server Analysis Services, and SQL Server Reporting Services.
N/A
Pricing
Apache Spark
Azure HDInsight
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache Spark
Azure HDInsight
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Spark
Azure HDInsight
Considered Both Products
Apache Spark
No answer on this topic
Azure HDInsight
Verified User
Employee
Chose Azure HDInsight
Many times you just need spark performing fast and cheap. Azure HDInsight Includes lots of features and not required software. Also its libraries and runtime versions are pritty old. But, what is great Is you don't need to have an expert in your team and things -when work- …
Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Well suited: A tiny-mid sized company with no immediate plans of growing the volume of their data processing, that can afford long response times from support. Also it helps if you are not prone to put your hands on Linux and Spark configuration. In fact, it can make things go really faster if you also work with the bundle-in Jupyter. And, if you need to perform some diagnostics and / or administrative tasks, that's full of tools to find an understand the Root Cause. Ideal for non experts. Less appropriate: Big Data company, intense on demand cluster creation, mission critical, costs reduction, latest versions of libraries required, sophisticate customizations required.
The only problem I have come across is when loading large volumes of data I sometimes get an error message, I assume this means something is corrupt from within. I would love a way for this to be resolved without having to start over.
If the team looking to use Apache Spark is not used to debug and tweak settings for jobs to ensure maximum optimizations, it can be frustrating. However, the documentation and the support of the community on the internet can help resolve most issues. Moreover, it is highly configurable and it integrates with different tools (eg: it can be used by dbt core), which increase the scenarios where it can be used
Azure HDInsight is usable on the top of Azure Data Lake and gives us the benefit of analyzing large scale data workload in Hadoop. Usability and support from Microsoft are outstanding.
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Inexpert, isolated teams... not good for support an excessively complex platform. Lots of weeks or months for a complex problem troubleshoot. Many time lost stuck on MindTree, before the case was finally escalated with Microsoft!
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
At this time I have not used any other similar products... I am open to it but Azure HDInsight and its components really work well for our organization.