The Cloudera Enterprise Data Hub powered by SDX is a multifunction analytics solution that supports a range of operational and analytic use cases for enterprises.
N/A
Pricing
Apache Spark
Cloudera Enterprise Data Hub
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache Spark
Cloudera Enterprise Data Hub
Free Trial
No
No
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Spark
Cloudera Enterprise Data Hub
Considered Both Products
Apache Spark
No answer on this topic
Cloudera Enterprise Data Hub
Verified User
Engineer
Chose Cloudera Enterprise Data Hub
Cloudera supports Impala and Hortonworks supports LLAP and both of them are good in terms of performance. Hortonworks uses more up to date technology support in terms of supported versions.
The software appears to run more efficiently than other big data tools, such as Hadoop. Given that, Apache Spark is well-suited for querying and trying to make sense of very, very large data sets. The software offers many advanced machine learning and econometrics tools, although these tools are used only partially because very large data sets require too much time when the data sets get too large. The software is not well-suited for projects that are not big data in size. The graphics and analytical output are subpar compared to other tools.
Cloudera excels at seamless migrations and upgrades.
Cloudera supports self-healing and data center replacement of failed cloud instances while maintaining the state.
Cloudera is essential to increase or decrease capacity through the user interface or API.
Cloudera is great at simplifying big data analytics by providing the technology and tools needed to gain insights from IoT and connected devices to help monitor and condition our assets.
Cloudera's cybersecurity platform option offers stronger anomaly detection, visibility, and prevention, as well as faster behavioral analysis.
Cloudera is beneficial for enabling and utilizing the platform's machine learning and ad-hoc queries while securely storing, retrieving, and analyzing any volume of data at scale.
Likely to renew the use in case the requirements for Cloudera remain valid. The rapid change in customer requirements and solutions that must be validated, integrated or tested changes. As the maturity of the solution increases, the requirements to renew use decrease. From a solution feature perspective by itself would probably grade 10.
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Cloudera is compatible with Windows operating systems, and Mac allows cloud-based deployment, it is also very useful to configure data encryption, guarantee protocols, and security policies. It also provides integrated auditing and monitoring capabilities, as well as a control comprehensive data repository for the enterprise, and ensures vendor compatibility through its open-source architecture.
Cloudera products are the most widely. It is more business friendly as data is more secure. The sensitive data that you operate on is local to you and your project rather than processing this data on Cloud.
Cloudera is definitely faster as wait time is reduced if on Cloud.
A lot range of products are covered. So it is definitely good for businesses and had good returns on investments.