As I've mentioned, the biggest competitor to Azure Search is actually Azure SQL Database. It doesn't have as many features, but it's more economical and most .Net applications will have one already. As long as you can arrive at a schema and ranking strategy, it's a "good …
Azure AI Search is a native solution which places it above any third-party solutions like the Elastisearch, so choosing Azure AI Search was a no-brainer. Elasticsearch is also easy to implement but unlike Azure AI Search the integration with data sources like Azure SQL Database …
It's very useful when used with large file systems, once the models index the files good enough, the suggestions are very impressive and produce grounded answers. Since it can natively work with blob storage the requirement for pre-processing the data is eliminated i.e. the data can be searched in its raw form, this makes Azure AI Search a very powerful tool when used with Azure Stack.
Elasticsearch is a really scalable solution that can fit a lot of needs, but the bigger and/or those needs become, the more understanding & infrastructure you will need for your instance to be running correctly. Elasticsearch is not problem-free - you can get yourself in a lot of trouble if you are not following good practices and/or if are not managing the cluster correctly. Licensing is a big decision point here as Elasticsearch is a middleware component - be sure to read the licensing agreement of the version you want to try before you commit to it. Same goes for long-term support - be sure to keep yourself in the know for this aspect you may end up stuck with an unpatched version for years.
As I mentioned before, Elasticsearch's flexible data model is unparalleled. You can nest fields as deeply as you want, have as many fields as you want, but whatever you want in those fields (as long as it stays the same type), and all of it will be searchable and you don't need to even declare a schema beforehand!
Elastic, the company behind Elasticsearch, is super strong financially and they have a great team of devs and product managers working on Elasticsearch. When I first started using ES 3 years ago, I was 90% impressed and knew it would be a good fit. 3 years later, I am 200% impressed and blown away by how far it has come and gotten even better. If there are features that are missing or you don't think it's fast enough right now, I bet it'll be suitable next year because the team behind it is so dang fast!
Elasticsearch is really, really stable. It takes a lot to bring down a cluster. It's self-balancing algorithms, leader-election system, self-healing properties are state of the art. We've never seen network failures or hard-drive corruption or CPU bugs bring down an ES cluster.
Like virtually all Azure services, it has first-class treatment for .Net as the developer platform of choice, but largely ignores other options. While there is a first-party Python SDK, there are only community packages for other languages like Ruby and Node. Might be a game of roulette for those to be kept up-to-date. This might make it a non-starter for some teams that don't want to do the work to integrate with the REST API directly.
In my opinion, partitions inside of Azure Search don't count as data segregation for customers in a multi-tenant app, so any application where you have many customers with high-security concerns, Azure Search is probably a non-starter.
To elaborate on the multi-tenant issue: Azure Search's approach to pricing is pretty steep. While there is a free tier for small applications (50MB of content or less) the first paid tier is about 14x more expensive than the first SQL Database tier that supports full-text search. For many applications, it makes a lot more economic sense to just run some LIKE or CONTAINS queries on columns in a table rather than going with Azure Search.
I want to improve their product and also want to learn Azure AI Search like a professional and use it with full feature but their price is too high, so now I use the free plan as of now, but it takes a very large amount of data, type is few minutes, and give result that I want.
To get started with Elasticsearch, you don't have to get very involved in configuring what really is an incredibly complex system under the hood. You simply install the package, run the service, and you're immediately able to begin using it. You don't need to learn any sort of query language to add data to Elasticsearch or perform some basic searching. If you're used to any sort of RESTful API, getting started with Elasticsearch is a breeze. If you've never interacted with a RESTful API directly, the journey may be a little more bumpy. Overall, though, it's incredibly simple to use for what it's doing under the covers.
We've only used it as an opensource tooling. We did not purchase any additional support to roll out the elasticsearch software. When rolling out the application on our platform we've used the documentation which was available online. During our test phases we did not experience any bugs or issues so we did not rely on support at all.
As far as we are concerned, Elasticsearch is the gold standard and we have barely evaluated any alternatives. You could consider it an alternative to a relational or NoSQL database, so in cases where those suffice, you don't need Elasticsearch. But if you want powerful text-based search capabilities across large data sets, Elasticsearch is the way to go.
When integrated with our existing file system the Azure AI Search helped users tremendously by reducing search times and improve efficacy of intended result.
Since Azure AI Search is a PaaS solution, we had very short ideation to go-live timespan, which ended up reflecting in our product performance.
A rare but not negligible occurrence was correctness of search being questionable when new data was added to the system. The search returns false positive results.
We have had great luck with implementing Elasticsearch for our search and analytics use cases.
While the operational burden is not minimal, operating a cluster of servers, using a custom query language, writing Elasticsearch-specific bulk insert code, the performance and the relative operational ease of Elasticsearch are unparalleled.
We've easily saved hundreds of thousands of dollars implementing Elasticsearch vs. RDBMS vs. other no-SQL solutions for our specific set of problems.