Azure Data Lake Analytics vs. Amazon Redshift

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Azure Data Lake Analytics
Score 5.7 out of 10
N/A
Microsoft's Azure Data Lake Analytics is a BI service for processing big data jobs without consideration for infrastructure.N/A
Amazon Redshift
Score 8.7 out of 10
N/A
Amazon Redshift is a hosted data warehouse solution, from Amazon Web Services.
$0.24
per GB per month
Pricing
Azure Data Lake AnalyticsAmazon Redshift
Editions & Modules
No answers on this topic
Redshift Managed Storage
$0.24
per GB per month
Current Generation
$0.25 - $13.04
per hour
Previous Generation
$0.25 - $4.08
per hour
Redshift Spectrum
$5.00
per terabyte of data scanned
Offerings
Pricing Offerings
Azure Data Lake AnalyticsAmazon Redshift
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Azure Data Lake AnalyticsAmazon Redshift
Best Alternatives
Azure Data Lake AnalyticsAmazon Redshift
Small Businesses

No answers on this topic

Google BigQuery
Google BigQuery
Score 8.7 out of 10
Medium-sized Companies

No answers on this topic

Snowflake
Snowflake
Score 8.7 out of 10
Enterprises

No answers on this topic

Snowflake
Snowflake
Score 8.7 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Azure Data Lake AnalyticsAmazon Redshift
Likelihood to Recommend
8.7
(6 ratings)
9.0
(38 ratings)
Usability
-
(0 ratings)
9.0
(10 ratings)
Support Rating
-
(0 ratings)
9.0
(7 ratings)
Contract Terms and Pricing Model
-
(0 ratings)
10.0
(1 ratings)
User Testimonials
Azure Data Lake AnalyticsAmazon Redshift
Likelihood to Recommend
Microsoft
Azure Data Lake Analytics services are beneficial when working with a lot of data. It can process enormous amounts of data extremely quickly. Service is secure and easy to set up, build, scale, and run on Azure. Regarding big data analytics and reporting, parallel processing has a significant impact. It consolidated our analytics from multiple systems and increased our analysis productivity. This tool has excellent support for reporting tools like Power BI and is very quick when performing analytics.
Read full review
Amazon AWS
If the number of connections is expected to be low, but the amounts of data are large or projected to grow it is a good solutions especially if there is previous exposure to PostgreSQL. Speaking of Postgres, Redshift is based on several versions old releases of PostgreSQL so the developers would not be able to take advantage of some of the newer SQL language features. The queries need some fine-tuning still, indexing is not provided, but playing with sorting keys becomes necessary. Lastly, there is no notion of the Primary Key in Redshift so the business must be prepared to explain why duplication occurred (must be vigilant for)
Read full review
Pros
Microsoft
  • Process large data transformation jobs using pretty much any language needed.
  • Native integration with Azure storage.
  • Top notch security that fulfills all audit needs.
  • Easy to consolidate enterprise data under one location - Single source of truth.
Read full review
Amazon AWS
  • [Amazon] Redshift has Distribution Keys. If you correctly define them on your tables, it improves Query performance. For instance, we can define Mapping/Meta-data tables with Distribution-All Key, so that it gets replicated across all the nodes, for fast joins and fast query results.
  • [Amazon] Redshift has Sort Keys. If you correctly define them on your tables along with above Distribution Keys, it further improves your Query performance. It also has Composite Sort Keys and Interleaved Sort Keys, to support various use cases
  • [Amazon] Redshift is forked out of PostgreSQL DB, and then AWS added "MPP" (Massively Parallel Processing) and "Column Oriented" concepts to it, to make it a powerful data store.
  • [Amazon] Redshift has "Analyze" operation that could be performed on tables, which will update the stats of the table in leader node. This is sort of a ledger about which data is stored in which node and which partition with in a node. Up to date stats improves Query performance.
Read full review
Cons
Microsoft
  • There's a bit of bias towards cloud with ADL Analytics. Depending upon a company's infra strategy and investment plans, there are some challenges with migration and integeration.
  • Not worth the time/effort/money if the organization doesn't have "Volume" of data. Cost effective only when daily loads exceed around 1million.
  • While training materials are available online, Adoption rate - Yet to pick up.
Read full review
Amazon AWS
  • We've experienced some problems with hanging queries on Redshift Spectrum/external tables. We've had to roll back to and old version of Redshift while we wait for AWS to provide a patch.
  • Redshift's dialect is most similar to that of PostgreSQL 8. It lacks many modern features and data types.
  • Constraints are not enforced. We must rely on other means to verify the integrity of transformed tables.
Read full review
Usability
Microsoft
No answers on this topic
Amazon AWS
Just very happy with the product, it fits our needs perfectly. Amazon pioneered the cloud and we have had a positive experience using RedShift. Really cool to be able to see your data housed and to be able to query and perform administrative tasks with ease.
Read full review
Support Rating
Microsoft
No answers on this topic
Amazon AWS
The support was great and helped us in a timely fashion. We did use a lot of online forums as well, but the official documentation was an ongoing one, and it did take more time for us to look through it. We would have probably chosen a competitor product had it not been for the great support
Read full review
Alternatives Considered
Microsoft
We did some research about Alibaba Cloud Data Lake Analytics and even being cheaper than Azure Data Lake Analytics, we decided to go for the second one once we noticed they have more features and better documentation. Another thing we considered during this process was the fact that we have more people that already have Azure Cloud knowledge.
Read full review
Amazon AWS
Than Vertica: Redshift is cheaper and AWS integrated (which was a plus because the whole company was on AWS).
Than BigQuery: Redshift has a standard SQL interface, though recently I heard good things about BigQuery and would try it out again.
Than Hive: Hive is great if you are in the PB+ range, but latencies tend to be much slower than Redshift and it is not suited for ad-hoc applications.
Read full review
Contract Terms and Pricing Model
Microsoft
No answers on this topic
Amazon AWS
Redshift is relatively cheaper tool but since the pricing is dynamic, there is always a risk of exceeding the cost. Since most of our team is using it as self serve and there is no continuous tracking by a dedicated team, it really needs time & effort on analyst's side to know how much it is going to cost.
Read full review
Return on Investment
Microsoft
  • It lets us manage and scan data, making our work easy and efficient.
  • It helped me manage real-time data, process it, and send it to reporting.
  • Data centralization or data warehousing projects are being implemented with its help.
Read full review
Amazon AWS
  • Our company is moving to the AWS infrastructure, and in this context moving the warehouse environments to Redshift sounds logical regardless of the cost.
  • Development organizations have to operate in the Dev/Ops mode where they build and support their apps at the same time.
  • Hard to estimate the overall ROI of moving to Redshift from my position. However, running Redshift seems to be inexpensive compared to all the licensing and hardware costs we had on our RDBMS platform before Redshift.
Read full review
ScreenShots