HDInsight is an implementation of the Apache Hadoop technology stack on the Microsoft Azure cloud platform: It is based on the Hortonworks Hadoop distribution. Microsoft Azure HDInsight includes implementations of Apache Spark, HBase, Storm, Pig, Hive, Sqoop, Oozie, Ambari, etc. It also integrates with with business intelligence (BI) tools such as Power BI, Excel, SQL Server Analysis Services, and SQL Server Reporting Services.
N/A
Databricks Data Intelligence Platform
Score 8.7 out of 10
N/A
Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run…
Well suited: A tiny-mid sized company with no immediate plans of growing the volume of their data processing, that can afford long response times from support. Also it helps if you are not prone to put your hands on Linux and Spark configuration. In fact, it can make things go really faster if you also work with the bundle-in Jupyter. And, if you need to perform some diagnostics and / or administrative tasks, that's full of tools to find an understand the Root Cause. Ideal for non experts. Less appropriate: Big Data company, intense on demand cluster creation, mission critical, costs reduction, latest versions of libraries required, sophisticate customizations required.
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
The only problem I have come across is when loading large volumes of data I sometimes get an error message, I assume this means something is corrupt from within. I would love a way for this to be resolved without having to start over.
Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
Visualization in MLFLOW experiment can be enhanced
Azure HDInsight is usable on the top of Azure Data Lake and gives us the benefit of analyzing large scale data workload in Hadoop. Usability and support from Microsoft are outstanding.
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.
in terms of graph generation and interaction it could improve their UI and UX
Inexpert, isolated teams... not good for support an excessively complex platform. Lots of weeks or months for a complex problem troubleshoot. Many time lost stuck on MindTree, before the case was finally escalated with Microsoft!
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
At this time I have not used any other similar products... I am open to it but Azure HDInsight and its components really work well for our organization.
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.