Microsoft's Azure Machine Learning is and end-to-end data science and analytics solution that helps professional data scientists to prepare data, develop experiments, and deploy models in the cloud. It replaces the Azure Machine Learning Workbench.
$0
per month
Streamlit
Score 8.1 out of 10
N/A
Streamlit is an open-source Python library designed to make it easy to build custom web-apps for machine learning and data science, from the company of the same name in San Francisco. Streamlit also hosts its community's Streamlit Component offered via API to help users get started.
- Don't want to pay Tableau $1,000 / seat? Use Streamlit - Want fully custom views and navigation? Use Streamlit - Want access to Machine Learning and not just your dev team? Use Streamlit - Want to keep things internal and secure? Use Streamlit - Want your Data Science team to be able to crank out projects quickly? Use Streamlit - Sick of Jupyter Notebooks and Business Leaders not understanding them? Use Streamlit Our D.S. strategy has moved completely to delivering pages in Streamlit. I can hand an executive a Jupyter notebook and it'll get lost in translation. I can give them sign-in access to a page and they can answer all of their own "What-If?" questions! We've used Streamlit to productize our Data Science and Machine Learning capabilities.
User friendliness: This is by far the most user friendly tool I've seen in analytics. You don't need to know how to code at all! Just create a few blocks, connect a few lines and you are capable of running a boosted decision tree with a very high R squared!
Speed: Azure ML is a cloud based tool, so processing is not made with your computer, making the reliability and speed top notch!
Cost: If you don't know how to code, this is by far the cheapest machine learning tool out there. I believe it costs less than $15/month. If you know how to code, then R is free.
Connectivity: It is super easy to embed R or Python codes on Azure ML. So if you want to do more advanced stuff, or use a model that is not yet available on Azure ML, you can simply paste the code on R or Python there!
Microsoft environment: Many many companies rely on the Microsoft suite. And Azure ML connects perfectly with Excel, CSV and Access files.
Recent Security issues (they quickly released an update to combat this though...)
Requires a bit of HTML knowledge to really customize. If you're going quick, you don't need HTML though. Streamlit commands will pump your page out fast.
It is easier to learn, it has a very cost effective license for use, it has native build and created for Azure cloud services, and that makes it perfect when compared against the alternatives. As a Microsoft tool, it has been built to contain many visual features and improved usability even for non-specialist users.
I started using Streamlit when it first came out and thought it was really useful and powerful. A few years later and they've really hit their stride! The features / widgets / materials they provide have been well researched, well designed, and well implemented. I will take Streamlit to any future companies I go to as well as be a strong promoter wherever I'm currently at. It's free. It's easy to use. It is really powerful. Sure? You could go pay for a larger system but your Data Science team should be able to handle Streamlit easily. I'd argue a non-technical person spending a few weeks in python could pick up Streamlit really quickly.
Productivity: Instead of coding and recoding, Azure ML helped my organization to get to meaningful results faster;
Cost: Azure ML can save hundreds (or even thousands) of dollars for an organization, since the license costs around $15/month per seat.
Focus on insights and not on statistics: Since running a model is so easy, analysts can focus more on recommendations and insights, rather than statistical details