Azure Synapse Analytics is described as the former Azure SQL Data Warehouse, evolved, and as a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives users the freedom to query data using either serverless or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
Synapse, in comparison has its ups and downs against the competitors. However, where it excels, and builds it's markets is the cheaper costs (compared to Redshift), low code platforms and an in house solution that does not need you to leave the Synapse workspace for end to end …
Databricks is a complete product with new features constantly coming out. This can be both good or bad, with a lot of innovation comes a responsibility to keep your code and pipelines fresh.
Fabric on the other hand is a half complete product with a lot of potential, but its …
Our team evaluated multiple platform as I mentioned above , but we stacks up Azure Synapse Analytics because :
1. Easy UI and Unified platform advantage
2. Tight integrations with MS ecosystem.
Verified User
Engineer
Chose Azure Synapse Analytics
They're all part of the Microsoft Azure family, so they are not exactly competitors. They overlap in functionality, but they're targeted at different levels of customers. Azure Data Factory is an excellent stand-alone PaaS (included in Synapse Analytics) for writing, scheduling, …
Director, eCommerce Analytics and Digital Marketing
Chose Azure Synapse Analytics
Azure Synapse Analytics stacks up well against the competitors I mentioned above. Technically, Azure SQL Datawarehouse is an upgraded version of the Azure SQL Database. So, the choice to move from one to the other depends on the processing needs of your company. If you need …
When client is already having or using Azure then it’s wise to go with Synapse rather than using Snowflake. We got a lot of help from Microsoft consultants and Microsoft partners while implementing our EDW via Synapse and support is easily available via Microsoft resources and …
In comparing Azure Synapse to the Google BigQuery - the biggest highlight that I'd like to bring forward is Azure Synapse SQL leverages a scale-out architecture in order to distribute computational processing of data across multiple nodes whereas Google BigQuery only takes into …
We also looked at Oracle Data Warehouse as part of our short list of products to implement as a solution. Oracle's product turned out to have less support by way of easily accessible internet blogs. Oracle was also considerably more expensive and we would have needed to hire …
SQL Data Warehousing is much easier to manage if you already have SQL Server experience and analysts who are familiar with its interface. We are currently piloting using NoSQL and Hadoop type databases but it is difficult to get set up properly. Additionally, we have to …
It's well suited for large, fastly growing, and frequently changing data warehouses (e.g., in startups). It's also suited for companies that want a single, relatively easy-to-use, centralized cloud service for all their data needs. Larger, more structured organizations could still benefit from this service by using Synapse Dedicated SQL Pools, knowing that costs will be much higher than other solutions. I think this product is not suited for smaller, simpler workloads (where an Azure SQL Database and a Data Factory could be enough) or very large scenarios, where it may be better to build custom infrastructure.
Quick to return data. Queries in a SQL data warehouse architecture tend to return data much more quickly than a OLTP setup. Especially with columnar indexes.
Ability to manage extremely large SQL tables. Our databases contain billions of records. This would be unwieldy without a proper SQL datawarehouse
Backup and replication. Because we're already using SQL, moving the data to a datawarehouse makes it easier to manage as our users are already familiar with SQL.
With Azure, it's always the same issue, too many moving parts doing similar things with no specialisation. ADF, Fabric Data Factory and Synapse pipeline serve the same purpose. Same goes for Fabric Warehouse and Synapse SQL pools.
Could do better with serverless workloads considering the competition from databricks and its own fabric warehouse
Synapse pipelines is a replica of Azure Data Factory with no tight integration with Synapse and to a surprise, with missing features from ADF. Integration of warehouse can be improved with in environment ETl tools
The data warehouse portion is very much like old style on-prem SQL server, so most SQL skills one has mastered carry over easily. Azure Data Factory has an easy drag and drop system which allows quick building of pipelines with minimal coding. The Spark portion is the only really complex portion, but if there's an in-house python expert, then the Spark portion is also quiet useable.
Microsoft does its best to support Synapse. More and more articles are being added to the documentation, providing more useful information on best utilizing its features. The examples provided work well for basic knowledge, but more complex examples should be added to further assist in discovering the vast abilities that the system has.
In comparing Azure Synapse to the Google BigQuery - the biggest highlight that I'd like to bring forward is Azure Synapse SQL leverages a scale-out architecture in order to distribute computational processing of data across multiple nodes whereas Google BigQuery only takes into account computation and storage.
Licensing fees is replaced with Azure subscription fee. No big saving there
More visibility into the Azure usage and cost
It can be used a hot storage and old data can be archived to data lake. Real time data integration is possible via external tables and Microsoft Power BI