Azure Synapse Analytics is described as the former Azure SQL Data Warehouse, evolved, and as a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives users the freedom to query data using either serverless or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
$4,700
per month 5000 Synapse Commit Units (SCUs)
OpenText Vertica
Score 10.0 out of 10
N/A
The Vertica Analytics Platform supplies enterprise data warehouses with big data analytics capabilities and modernization. Vertica is owned and supported by OpenText.
It's well suited for large, fastly growing, and frequently changing data warehouses (e.g., in startups). It's also suited for companies that want a single, relatively easy-to-use, centralized cloud service for all their data needs. Larger, more structured organizations could still benefit from this service by using Synapse Dedicated SQL Pools, knowing that costs will be much higher than other solutions. I think this product is not suited for smaller, simpler workloads (where an Azure SQL Database and a Data Factory could be enough) or very large scenarios, where it may be better to build custom infrastructure.
Vertica as a data warehouse to deliver analytics in-house and even to your client base on scale is not rivaled anywhere in the market. Frankly, in my experience it is not even close to equaled. Because it is such a powerful data warehouse, some people attempt to use it as a transactional database. It certainly is not one of those. Individual row inserts are slow and do not perform well. Deletes are a whole other story. RDBMS it is definitely not. OLAP it rocks.
Quick to return data. Queries in a SQL data warehouse architecture tend to return data much more quickly than a OLTP setup. Especially with columnar indexes.
Ability to manage extremely large SQL tables. Our databases contain billions of records. This would be unwieldy without a proper SQL datawarehouse
Backup and replication. Because we're already using SQL, moving the data to a datawarehouse makes it easier to manage as our users are already familiar with SQL.
With Azure, it's always the same issue, too many moving parts doing similar things with no specialisation. ADF, Fabric Data Factory and Synapse pipeline serve the same purpose. Same goes for Fabric Warehouse and Synapse SQL pools.
Could do better with serverless workloads considering the competition from databricks and its own fabric warehouse
Synapse pipelines is a replica of Azure Data Factory with no tight integration with Synapse and to a surprise, with missing features from ADF. Integration of warehouse can be improved with in environment ETl tools
Could use some work on better integrating with cloud providers and open source technologies. For AWS you will find an AMI in the marketplace and recently a connector for loading data from S3 directly was created. With last release, integration with Kafka was added that can help.
Managing large workloads (concurrent queries) is a bit challenging.
Having a way to provide an estimate on the duration for currently executing queries / etc. can be helpful. Vertica provides some counters for the query execution engine that are helpful but some may find confusing.
Unloading data over JDBC is very slow. We've had to come up with alternatives based on vsql, etc. Not a very clean, official on how to unload data.
The data warehouse portion is very much like old style on-prem SQL server, so most SQL skills one has mastered carry over easily. Azure Data Factory has an easy drag and drop system which allows quick building of pipelines with minimal coding. The Spark portion is the only really complex portion, but if there's an in-house python expert, then the Spark portion is also quiet useable.
Microsoft does its best to support Synapse. More and more articles are being added to the documentation, providing more useful information on best utilizing its features. The examples provided work well for basic knowledge, but more complex examples should be added to further assist in discovering the vast abilities that the system has.
I haven't had any recent opportunity to reach out to Vertica support. From what I remember, I believe whenever I reached out to them the experience was smooth.
In comparing Azure Synapse to the Google BigQuery - the biggest highlight that I'd like to bring forward is Azure Synapse SQL leverages a scale-out architecture in order to distribute computational processing of data across multiple nodes whereas Google BigQuery only takes into account computation and storage.
Vertica performs well when the query has good stats and is tuned well. Options for GUI clients are ugly and outdated. IO optimized: it's a columnar store with no indexing structures to maintain like traditional databases. The indexing is achieved by storing the data sorted on disk, which itself is run transparently as a background process.
Licensing fees is replaced with Azure subscription fee. No big saving there
More visibility into the Azure usage and cost
It can be used a hot storage and old data can be archived to data lake. Real time data integration is possible via external tables and Microsoft Power BI