The Cloudera Enterprise Data Hub powered by SDX is a multifunction analytics solution that supports a range of operational and analytic use cases for enterprises.
N/A
Databricks Data Intelligence Platform
Score 8.6 out of 10
N/A
Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run…
Cloudera excels at seamless migrations and upgrades.
Cloudera supports self-healing and data center replacement of failed cloud instances while maintaining the state.
Cloudera is essential to increase or decrease capacity through the user interface or API.
Cloudera is great at simplifying big data analytics by providing the technology and tools needed to gain insights from IoT and connected devices to help monitor and condition our assets.
Cloudera's cybersecurity platform option offers stronger anomaly detection, visibility, and prevention, as well as faster behavioral analysis.
Cloudera is beneficial for enabling and utilizing the platform's machine learning and ad-hoc queries while securely storing, retrieving, and analyzing any volume of data at scale.
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
Visualization in MLFLOW experiment can be enhanced
Likely to renew the use in case the requirements for Cloudera remain valid. The rapid change in customer requirements and solutions that must be validated, integrated or tested changes. As the maturity of the solution increases, the requirements to renew use decrease. From a solution feature perspective by itself would probably grade 10.
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.
in terms of graph generation and interaction it could improve their UI and UX
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
Cloudera is compatible with Windows operating systems, and Mac allows cloud-based deployment, it is also very useful to configure data encryption, guarantee protocols, and security policies. It also provides integrated auditing and monitoring capabilities, as well as a control comprehensive data repository for the enterprise, and ensures vendor compatibility through its open-source architecture.
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.
Cloudera products are the most widely. It is more business friendly as data is more secure. The sensitive data that you operate on is local to you and your project rather than processing this data on Cloud.
Cloudera is definitely faster as wait time is reduced if on Cloud.
A lot range of products are covered. So it is definitely good for businesses and had good returns on investments.